

MariaDB Cookbook

Over 95 recipes to unlock the power of MariaDB

Daniel Bartholomew

BIRMINGHAM - MUMBAI

MariaDB Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2014

Production Reference: 1120314

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-439-9

www.packtpub.com

Cover Image by Aniket Sawant (aniket_sawant_photography@hotmail.com)

Credits

Author
Daniel Bartholomew

Reviewers
Pradeesh Parameswaran

Sergei Petrunia

Acquisition Editors
Vinay Argekar

Amarabha Banerjee

Rubal Kaur

Content Development Editor
Anila Vincent

Technical Editors
Menza Mathew

Shali Sasidharan

Copy Editors
Karuna Narayanan

Laxmi Subramanian

Project Coordinator
Venitha Cutinho

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexer
Priya Subramani

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Author

Daniel Bartholomew has been using Linux since 1997 and databases since 1998. He is
a frequent contributor to various magazines, including The Linux Journal, Linux Pro, Ubuntu,
User, and Tux.

He has been involved with the MariaDB project since shortly after it began in early 2009.
He currently works for SkySQL and splits his time between MariaDB documentation and
maintaining the bits and pieces (including build, e-mail, web, and other servers), which keeps
the MariaDB project running smoothly. In addition to his day-to-day responsibilities, he also
serves as the MariaDB release coordinator and has been deeply involved with almost every
MariaDB release.

He lives in Raleigh, North Carolina, U.S.A. with his lovely wife and awesome children.

I'd like to thank Amy, Ila, Lizzy, Anthon, and Rachel for their patience with me
throughout the writing of this book. Also, thanks to the awesome team
of MariaDB experts at SkySQL, who were very helpful at various points
during the project. Lastly, I'd like to thank Monty and the rest of the
MariaDB developers for the excellent database they've created.

About the Reviewers

Pradeesh Parameswaran started working on computers and programming right from
the age of 10. He wrote the first program for PalmOS and published to Handango. He is a geek
and loves explaining and helping people with their computer problems. Currently, he blogs
about tech-related stuff and provides how-to information in his blog at prasys.info. He is
also currently working for a telecommunications company in Malaysia. Also, he is a big fan of
the open source stuff!

I would like to thank my parents for the support and encouragement that
they have given me over the years to enable me to grow.

Sergei Petrunia has been working on MariaDB since 2009. He has implemented features
such as semijoin subquery optimizations, SHOW EXPLAIN, Cassandra storage engine, table
elimination, and numerous smaller improvements. Prior to MariaDB, he was a member of the
MySQL development team at MySQL AB and Sun Microsystems.

I would like to thank my girlfriend, Yulia, for being patient while I was
spending time to provide input for this book.

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface	 1
Chapter 1: Getting Started with MariaDB	 7

Introduction	 7
Installing MariaDB on Windows	 8
Installing MariaDB on Linux	 10
Installing MariaDB on Mac OS X	 13
Enabling the Feedback plugin	 14
Switching between InnoDB and XtraDB	 16
Creating a backup user	 17
Making backups with XtraBackup	 18
Making backups with mysqldump	 19
Checking and optimizing tables automatically with mysqlcheck and cron	 21
Using progress reporting in the mysql client	 22

Chapter 2: Diving Deep into MariaDB	 25
Introduction	 25
Importing the data exported by mysqldump	 25
Using SHOW EXPLAIN with running queries	 27
Using LIMIT ROWS EXAMINED	 32
Using INSTALL SONAME	 34
Producing HTML output	 35
Producing XML output	 36
Migrating a table from MyISAM to Aria	 37
Migrating a table from MyISAM or Aria to InnoDB or XtraDB	 39

ii

Table of Contents

Chapter 3: Optimizing and Tuning MariaDB	 41
Introduction	 42
Using SHOW STATUS to check if a feature is being used	 42
Controlling MariaDB optimizer strategies	 44
Using extended keys with InnoDB and XtraDB	 46
Configuring the Aria two-step deadlock detection	 47
Configuring the MyISAM segmented key cache	 49
Configuring threadpool	 50
Configuring the Aria pagecache	 53
Optimizing queries with the subquery cache	 55
Optimizing semijoin subqueries	 57
Creating an index	 59
Creating a full-text index	 60
Removing an index	 63
Using JOINs	 64
Using microseconds in the DATETIME columns	 65
Updating DATETIME and TIMESTAMP columns automatically	 67

Chapter 4: The TokuDB Storage Engine	 71
Introduction	 71
Installing TokuDB	 72
Configuring TokuDB	 74
Creating TokuDB tables	 75
Migrating to TokuDB	 77
Adding indexes to TokuDB tables	 79
Modifying the compression of a TokuDB table	 81

Chapter 5: The CONNECT Storage Engine	 83
Introduction	 83
Installing the CONNECT storage engine	 84
Creating and dropping CONNECT tables	 85
Reading and writing CSV data using CONNECT	 89
Reading and writing XML data using CONNECT	 93
Accessing MariaDB tables using CONNECT	 97
Using the XCOL table type	 99
Using the PIVOT table type	 100
Using the OCCUR table type	 103
Using the WMI table type	 106
Using the MAC address table type	 108

iii

Table of Contents

Chapter 6: Replication in MariaDB	 111
Introduction	 111
Setting up replication	 112
Using global transaction IDs	 117
Using multisource replication	 118
Enhancing the binlog with row event annotations	 122
Configuring binlog event checksums	 124
Selectively skipping the replication of binlog events	 125

Chapter 7: Replication with MariaDB Galera Cluster	 129
Introduction	 129
Installing MariaDB Galera Cluster	 130
Dropping a node from MariaDB Galera Cluster	 134
Shutting down MariaDB Galera Cluster	 136

Chapter 8: Performance and Usage Statistics	 139
Introduction	 139
Installing the Audit Plugin	 140
Using the Audit Plugin	 142
Using engine-independent table statistics	 145
Using extended statistics	 147
Enabling the performance schema	 148
Using the performance schema	 150

Chapter 9: Searching Data Using Sphinx	 153
Introduction	 153
Installing SphinxSE in MariaDB	 154
Installing the Sphinx daemon on Linux	 156
Installing the Sphinx daemon on Windows	 157
Configuring the Sphinx daemon	 160
Searching with the Sphinx daemon and SphinxSE	 163

Chapter 10: Exploring Dynamic and Virtual Columns in MariaDB	 169
Introduction	 169
Creating tables with dynamic columns	 170
Inserting, updating, and deleting dynamic column data	 171
Reading data from a dynamic column	 175
Using virtual columns	 180

iv

Table of Contents

Chapter 11: NoSQL with HandlerSocket	 185
Introduction	 186
Installing and configuring HandlerSocket	 186
Installing the libhsclient library	 189
Installing the HandlerSocket PERL client libraries	 191
Reading data using HandlerSocket and PERL	 192
Inserting data using HandlerSocket and PERL	 195
Updating and deleting data using HandlerSocket and PERL	 197
Installing the HandlerSocket Python client libraries	 200
Reading data using HandlerSocket and Python	 202
Inserting data using HandlerSocket and Python	 204
Updating and deleting data using HandlerSocket and Python	 206
Installing the HandlerSocket Ruby client libraries	 210
Reading data using HandlerSocket and Ruby	 211
Inserting data using HandlerSocket and Ruby	 214
Updating and deleting data using HandlerSocket and Ruby	 216
Using HandlerSocket directly with Telnet	 219

Chapter 12: NoSQL with the Cassandra Storage Engine	 227
Introduction	 227
Installing the Cassandra storage engine	 228
Mapping data between MariaDB and Cassandra	 230
Using INSERT, UPDATE, and DELETE with the Cassandra storage engine	 234
Using SELECT with the Cassandra storage engine	 236

Chapter 13: MariaDB Security	 241
Introduction	 241
Securing MariaDB with mysql_secure_installation	 241
Securing MariaDB files on Linux	 242
Securing MariaDB files on Windows	 245
Checking for users with insecure passwords	 248
Encrypting connections with SSL	 249
Using roles to control user permissions	 255
Authenticating using the PAM authentication plugin	 258

Index	 261

Preface
MariaDB is a mature, stable, open source relational database. From its beginning in 2009
as a branch or fork of the MySQL database, to its status today as the default version of that
database in most Linux distributions, and the database of choice for many companies large
and small, MariaDB has proven that communities of users and developers, working and
collaborating together, can do more than a single company could ever do.

MariaDB shares many features and capabilities of its parent database, but like most children
it has also surpassed its parent in many ways. The recipes in this book tread some common
ground, but they are mostly about the features that are unique to or were introduced first
in MariaDB.

The why of certain features is there, to a small degree, but the main emphasis in each
recipe is on the what and the how. The information you need to know to actually do
something always trumps the theory behind it.

As part of the growing library of MariaDB-specific books from Packt Publishing and other
publishers, the goal of this book is to give you a practical, hands-on experience with this
powerful, feature-rich database.

What this book covers
Chapter 1, Getting Started with MariaDB, covers installing MariaDB on Linux, Windows, and
Mac OS along with making backups, enabling common plugins, and other common tasks.

Chapter 2, Diving Deep into MariaDB, covers importing data, customizing the output of
queries, migrating the data, and other topics.

Chapter 3, Optimizing and Tuning MariaDB, covers various configuration and optimization
tasks as well as creating and removing indexes, JOINs, and other topics.

Chapter 4, The TokuDB Storage Engine, speaks about the alternative storage engine including
how to enable it, and how to use and configure it.

Preface

2

Chapter 5, The CONNECT Storage Engine, explores the CONNECT storage engine including
how to enable and configure it, and how to use it to connect to several different filetypes.

Chapter 6, Replication in MariaDB, includes recipes on global transaction IDs, multisource
replication, and the binary log.

Chapter 7, Replication with MariaDB Galera Cluster, includes recipes that cover how to install
and use this new clustering solution.

Chapter 8, Performance and Usage Statistics, covers using MariaDB's extended statistics,
the audit plugin, and the performance schema.

Chapter 9, Searching Data Using Sphinx, covers how to install and use this useful full-text
database indexer and search engine.

Chapter 10, Exploring Dynamic and Virtual Columns in MariaDB, is all about the built-in
NoSQL features of MariaDB including dynamic and virtual columns features in MariaDB.

Chapter 11, NoSQL with HandlerSocket, is a chapter devoted to the NoSQL HandlerSocket
feature and how to use it with various languages.

Chapter 12, NoSQL with the Cassandra Storage Engine, contains several recipes covering
the installation and usage of the Cassandra storage engine.

Chapter 13, MariaDB Security, contains several recipes relating to securing MariaDB.

What you need for this book
To get the most out of this book, you'll need a computer that is capable of running MariaDB.
Fortunately, this is quite easy as MariaDB runs well on many different versions of Windows,
Mac OS, and Linux. Due to the limitations of some storage engines and other MariaDB
components, there are some recipes which are Linux-only or Windows-only. These are
marked as such in the text.

This book assumes that the reader is familiar with either the Windows, Mac OS, or Linux
command-line environments; is comfortable with using a plain text editor; and knows
how to download and install software. It is also helpful if the reader is familiar with
databases and database concepts.

Who this book is for
This book is for anyone who wants to explore and learn how to use features that make
MariaDB different from other databases in its class in a practical, hands-on way.

Preface

3

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Open
our my.cnf or my.ini file in a text editor such as Vim, Emacs, TextWrangler, or Notepad."

A block of code is set as follows:

#
* HandlerSocket
#
handlersocket_address="127.0.0.1"
handlersocket_port="9998"
handlersocket_port_wr="9999"

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

ANALYZE TABLE table_name PERSISTENT FOR
 COLUMNS (column_1,column_2,...)
 INDEXES (index_1,index_2,...);

Any command-line input or output is written as follows:

GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.*

 TO replicant@'192.168.4.%'

 IDENTIFIED BY 'sup3rs3kr37p455w0rd';

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "The Feedback plugin
is turned off by default."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

4

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to
develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save other
readers from frustration and help us improve subsequent versions of this book. If you find
any errata, please report them by visiting http://www.packtpub.com/submit-errata,
selecting your book, clicking on the errata submission form link, and entering the details of
your errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Getting Started

with MariaDB

In this chapter, we will cover the following recipes:

ff Installing MariaDB on Windows

ff Installing MariaDB on Linux

ff Installing MariaDB on Mac OS X

ff Enabling the Feedback plugin

ff Switching between InnoDB and XtraDB

ff Creating a backup user

ff Making backups with XtraBackup

ff Making backups with mysqldump

ff Checking and optimizing tables automatically with mysqlcheck and cron

ff Using progress reporting in the mysql client

Introduction
This chapter is all about getting us up and running with MariaDB using basic recipes,
which provide the foundation for the other recipes in this book.

The first three recipes are the most basic of all the recipes and cover installing MariaDB on
the Windows, Linux, and Mac OS X operating systems. We'll then cover a couple of common
configuration options and some common maintenance tasks.

We'll finish the chapter with a recipe on the progress reporting feature of the mysql
client application.

Getting Started with MariaDB

8

Installing MariaDB on Windows
There was a time when installing MariaDB on Windows meant downloading and unpacking a
ZIP file. From then on, it was up to us to set up a system service, making sure that the paths
were correct, and so on. Today, the process is completely automated with the MariaDB MSI
package. The ZIP file is still available, but unless we know we want it (and we might!), there
is no reason to use it.

How to do it...
Let's get started by following these steps:

1.	 Visit http://mariadb.org/downloads and select the version of MariaDB
we are interested in. There will be a development version and a stable version.
For most users, the stable version is recommended.

2.	 After choosing the version of MariaDB that we want, select either the 32-bit or 64-bit
version of the MariaDB MSI package for Windows. For most computers, the 64-bit
version will work fine; but if we are on an older computer, we may need to use the
32-bit version.

3.	 Once it is downloaded, the installer may launch automatically, or depending on our
settings, we may need to manually launch it, as shown in the following screenshot:

Chapter 1

9

4.	 Once the installer starts, click through the defaults. We can change them if we want,
but there is no need.

5.	 After the installation has finished, MariaDB will be up and running on our
Windows computer.

How it works...
MSI stands for Microsoft installer. It's a standard package format for software installers on
the Windows operating system. The MariaDB MSI package encapsulates all of the common
manual steps for installing MariaDB. This includes steps such as setting up a Windows service
so that MariaDB can be started automatically at boot time, creating the data directory, and
so on.

There's more...
While clicking through the installer, there are some choices that we may wonder about.
Two of them are HeidiSQL and the Feedback plugin.

Getting Started with MariaDB

10

HeidiSQL
In addition to installing MariaDB, the MSI package also, by default installs the HeidiSQL
graphical client. This open source graphical client is a great way to interact with MariaDB, and
the MariaDB and HeidiSQL developers have worked together to make sure that it supports all
MariaDB features and options.

The Feedback plugin
One of the screens of the installer offers the option to turn on the Feedback plugin if we want
to. Refer to the Enabling the Feedback plugin recipe later in this chapter for more information
on this plugin and to know why it's a good idea to enable it.

See also
ff The full documentation of the MariaDB MSI installer for Windows can be found at

https://mariadb.com/kb/en/installing-mariadb-msi-packages-on-
windows/

Installing MariaDB on Linux
Most of the installs of MariaDB are on various flavors of Linux. This recipe will get most Linux
users up and running MariaDB quickly and easily.

Getting ready
First, determine which version of Linux we are running. In most cases, we will have installed
Linux ourselves, so we will know this information. But on the off chance we do not know the
information, the following command will give us the information we need:

cat /etc/lsb-release

On my desktop, the preceding command shows the following output:

daniel@gandalf:~$ cat /etc/lsb-release

DISTRIB_ID=Ubuntu

DISTRIB_RELEASE=10.04

DISTRIB_CODENAME=lucid

DISTRIB_DESCRIPTION="Ubuntu 10.04.4 LTS"

From this, I see that I am running Ubuntu 10.04 "lucid". This is all the information I need.

Chapter 1

11

How to do it...
Let's get started by following the ensuing steps:

1.	 Visit http://mariadb.org/downloads/mariadb/repositories and select
our distribution, release, version, and (for some distributions) the mirror that we
would like to use, as shown in the following screenshot:

2.	 Once all of the choices have been made, instructions will appear at the bottom of
the page.

3.	 On Fedora, CentOS, and Red Hat, the basic instructions are to copy the provided text
into the MariaDB.repo file located at /etc/yum.repos.d/ and then to issue the
following command in order to install MariaDB:
sudo yum install MariaDB-server MariaDB-client

4.	 During the initial installation with yum, we will be asked to accept the key used to sign
MariaDB packages. This key has a fingerprint as follows:
1993 69e5 404b d5fc 7d2f e43b cbcb 082a 1bb9 43db

Getting Started with MariaDB

12

5.	 Assuming that the fingerprint shown by yum matches the key fingerprint shown in
step 4, go ahead and answer yes to the question.

6.	 On Debian and Ubuntu, in addition to choosing the Linux distribution, release, and
MariaDB version, we need to choose the mirror that we want to use. After selecting
the items in all four boxes, customized instructions for installing MariaDB will appear
at the bottom of the page. As an example, the commands to install MariaDB 10.0 on
Ubuntu 12.04 LTS "Precise" are as follows:
sudo apt-get install python-software-properties

sudo apt-key adv --recv-keys --keyserver \

 keyserver.ubuntu.com 0xcbcb082a1bb943db

sudo add-apt-repository \

 'deb http://ftp.osuosl.org/pub/mariadb/repo/10.0/ubuntu
 precise main'

sudo apt-get update

sudo apt-get install mariadb-server

7.	 After the YUM or APT-based installation has finished, we can start and stop MariaDB
with the following commands:

sudo /etc/init.d/mysql start

sudo /etc/init.d/mysql stop

How it works...
The repository configurator supports the following Linux distributions:

ff Red Hat

ff Ubuntu

ff Debian

ff Mint

ff Mageia

ff Fedora

ff CentOS

ff openSUSE

New Linux distributions are added from time to time, so it's possible that when we visit the
website, another Linux distribution or two would have been added to the list.

Chapter 1

13

The common feature of all of these distributions is that they use a package manager. Fedora,
Red Hat, and CentOS use the Yellowdog Updater Modified (YUM) package manager. Debian,
Ubuntu, and Mint use the Advanced Package Tool (APT) package manager. The MariaDB
developers provide repositories for these distributions.

Other distributions such as Mageia and openSUSE are different. They use their own custom
package managers. MariaDB packages for these Linux distributions are provided by the
developers of those distributions. The repository configuration tool provides instructions
for the commands that we need to run in order to install MariaDB.

See also
ff The full documentation on installing MariaDB on Linux can be found at

https://mariadb.com/kb/en/mariadb-binary-packages/

Installing MariaDB on Mac OS X
Installing MariaDB on Mac OS X is similar to installing it on Linux (refer to the previous recipe),
with one important difference: the MariaDB developers do not provide the installer; instead,
it is provided by the brew project.

Getting ready
In order to install MariaDB on Mac OS X, we must first install Xcode from the Mac App Store.
Once that is installed, we need to install and configure brew. The complete set of instructions
for how to do this are on the brew website, http://brew.sh/, but the basic command is:

ruby -e \
 "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

After installing brew, we will run the following doctor command to make sure that everything
is set up properly:

brew doctor

When the doctor command finds an issue, and it might find several, it will print out a
suggested fix for each one. To ensure that brew is happy, we need to follow the instructions
until the doctor command gives us the following message:

Your system is ready to brew.

Getting Started with MariaDB

14

How to do it…
Let's get started by following the ensuing steps:

1.	 Run the following commands in our terminal:
brew update

brew install mariadb

2.	 If there are any dependencies, they will be installed first, and then brew will download
the latest stable MariaDB source code tarball, compile it, and then install it.

3.	 Once the installation has finished, link the MariaDB startup plist to the
LaunchAgents directory as follows, so that MariaDB will start automatically:
ln -sfv /usr/local/opt/mariadb/*.plist \

 ~/Library/LaunchAgents

4.	 To start MariaDB, use the following launchctl command to load the plist file:
launchctl load \

 ~/Library/LaunchAgents/homebrew.mxcl.mariadb.plist

5.	 To stop MariaDB, unload the plist file:
launchctl unload \

 ~/Library/LaunchAgents/homebrew.mxcl.mariadb.plist

How it works...
The brew installer works like a Linux package manager. Many open source software packages
can be installed with it, including MariaDB.

The brew installer does not set a password for the root user, so the first thing that we should
do after getting MariaDB running on Mac OS X is to run the mysql_secure_installation
script. For more information, refer to the Securing MariaDB with mysql_secure_installation
recipe in Chapter 13, MariaDB Security.

Enabling the Feedback plugin
The Feedback plugin gathers and submits anonymous usage information to the MariaDB
developers. Enabling it is an easy way to help out the project.

Getting ready
We'll need a running install of MariaDB. Refer to the previous recipes for instructions on how
to do this.

Chapter 1

15

How to do it...
Let's get started by following the ensuing steps:

1.	 Stop MariaDB by following the directions in the recipe that we followed when
installing MariaDB.

2.	 Open our my.cnf or my.ini file in a text editor such as Vim, Emacs, TextWrangler,
or Notepad. On Windows, there is a helpful link under the MariaDB group that
will automatically open the my.ini file in Notepad. On Linux, the my.cnf file is
located at either /etc/mysql/my.cnf or /etc/my.cnf depending on the Linux
distribution we are using.

3.	 Add the following line of code to the [mysqld] section of the system's my.cnf or
my.ini file (if the section does not exist, create it):
feedback=on

4.	 Save the file and then start MariaDB by following the instructions in the recipe we
followed when installing MariaDB, and the plugin will be enabled.

How it works...
The Feedback plugin is turned off by default. Adding feedback=on to the configuration file
lets MariaDB know that we want it enabled.

This plugin automatically sends anonymous usage data to the MariaDB developers, which
helps them to prioritize development resources. Examples of the type of data it collects
includes what operating system we're running, how much memory we have, what plugins
we have enabled, and so on.

The collected data can be viewed at http://mariadb.org/feedback_plugin.

There's more...
The Feedback plugin can be customized in various ways. For example, we can choose the
data that we want to send back. We can also configure the plugin to send the data to our
own server instead of sending it to the MariaDB developers.

See also
ff The full documentation of the Feedback plugin is available at

https://mariadb.com/kb/en/feedback-plugin/

Getting Started with MariaDB

16

Switching between InnoDB and XtraDB
By default, MariaDB uses the XtraDB storage engine in place of InnoDB because it contains
improvements to InnoDB that are useful for all users. If we want to use the InnoDB storage
engine for some reason, it is easy to do so.

How to do it...
Let's get started by following the ensuing steps:

1.	 Stop MariaDB by following the directions in the recipe we followed when
installing MariaDB.

2.	 Open our my.cnf or my.ini file in a text editor such as Vim, Emacs, TextWrangler,
or Notepad. On Windows, there is a helpful link under the MariaDB group that
will automatically open the my.ini file in Notepad. On Linux, the my.cnf file is
located at either /etc/mysql/my.cnf or /etc/my.cnf depending on the Linux
distribution we are using.

3.	 Add the following lines of code to the [mysqld] section of the system's my.cnf
or my.ini file. If the section does not exist, add it.
ignore_builtin_innodb
plugin_load=innodb=ha_innodb.so

4.	 Save the file and then start MariaDB by following the instructions in the recipe we
followed when installing MariaDB.

How it works...
To check if we are using InnoDB or XtraDB, we use the SHOW ENGINES command. If we are
using XtraDB, the InnoDB line of the output will begin as shown in the following command line:

| InnoDB | DEFAULT | Percona-XtraDB,Supports...

And, if we are using the InnoDB plugin, the InnoDB line will begin as shown in the following
command line:

| InnoDB | DEFAULT | Supports...

Only one of the storage engines can be loaded at one time. It is not possible to have both the
InnoDB and XtraDB plugins loaded at the same time.

Chapter 1

17

See also
ff Refer to another InnoDB- and XtraDB-specific recipe, Using extended keys with

InnoDB and XtraDB, in Chapter 3, Optimizing and Tuning MariaDB

ff The InnoDB and XtraDB section of the MariaDB Knowledgebase has lots
of great information on these storage engines, which is available at
https://mariadb.com/kb/en/xtradb-and-innodb/

Creating a backup user
It is a bad idea to use a super user like root for making backups. One main reason is
that backups often run automatically, and so the password has to be stored somewhere
(for example, in the my.cnf file). If the user that is being used for backups has full access
to the database, it could be abused, or an error in a backup script could cause all sorts
of trouble.

In this recipe, we will create a backup user with the minimum permissions necessary to run
both the mysqldump and XtraBackup programs.

How to do it…
Let's get started by following the ensuing steps:

1.	 Launch the mysql command-line client.

2.	 Create the backup user. For this recipe, we'll call the user backupuser and give the
user the password p455w0rd. The user can be named anything we wish, and the
password should definitely be changed to something unique:
CREATE USER 'backupuser'@'localhost'

 IDENTIFIED BY 'p455w0rd';

3.	 Next, we will grant our new user a minimal set of permissions, just enough so that it
can make backups as follows:
GRANT SELECT, SHOW VIEW, LOCK TABLES, RELOAD,

 REPLICATION CLIENT

 ON *.* TO 'backupuser'@'localhost';

4.	 Lastly, we will use the FLUSH PRIVILEGES command to force MariaDB to reread the
privileges table, which is always a good idea after granting new privileges to a user.

FLUSH PRIVILEGES;

Getting Started with MariaDB

18

How it works...
There's no need for the user we use to make backups in order to have every privilege on our
databases. They only need a specific subset. For example, they don't need the INSERT or
ALTER TABLE privileges since backup users just need to read the tables in our databases.
The set of privileges in this recipe are enough for both the XtraBackup and mysqldump
programs, and will likely be sufficient for other backup programs as well.

Making backups with XtraBackup
XtraBackup is a backup tool from Percona.

Getting ready
The precompiled XtraBackup packages are only available for Linux. Percona provides both
YUM and APT repositories.

You can follow the XtraBackup installation instructions on the Percona website available at
http://www.percona.com/doc/percona-xtrabackup/. Also, create a backup user
by following the instructions in the Creating a backup user recipe.

How to do it...
Let's get started by following the ensuing steps:

1.	 Run the following command by changing the --user, --password, and /path/to/
backups parts to the correct values:
sudo innobackupex --user=backupuser \

 --password=p455w0rd /path/to/backups

2.	 The innobackupex script will call XtraBackup and copy all of the files to a
timestamped subdirectory of the specified backup directory. When it has finished,
if everything went well, it will print a line similar to the following line of output:

130729 12:05:12 innobackupex: completed OK!

How it works...
The innobackupex script is a wrapper around XtraBackup. By itself, the XtraBackup
program only backs up InnoDB and XtraDB databases. When the innobackupex script is
used, MyISAM, Aria, and other non-InnoDB tables are also backed up.

Chapter 1

19

There's more...
Backups created by XtraBackup and the innobackupex scripts are not ready to be used to
restore a database as is. Backups must be prepared prior to restoring. There are also some
things that we need to be aware of when backing up to an NFS-mounted disk.

Restoring from a backup
In order to prepare an XtraBackup backup to be restored, we must first prepare it as follows:

sudo innobackupex --apply-log /path/to/backups

Then, we can restore it with the following command:

sudo innobackupex --copy-back /path/to/backup

As with running the script for the initial backup, look for the completed OK! message at the
end of the preparing and restoring steps.

The innobackupex script will refuse to overwrite the files in the data directory, so it must be
empty before a restore can happen.

As a final step, we will also likely need to fix permissions on the restored files with something
similar to the following command:

sudo chown -R mysql:mysql /var/lib/mysql

XtraBackup and NFS
When backing up to an NFS-mounted volume, check to make sure that it is mounted with the
sync option. Data may appear corrupt if our NFS volume is mounted with the async option.
Refer to the XtraBackup documentation for more information.

Making backups with mysqldump
The mysqldump program is included with MariaDB and works well as a simple backup tool.

Getting ready
Create a backup user by following the instructions in the Creating a backup user recipe.

Getting Started with MariaDB

20

How to do it…
Let's get started by following the ensuing steps:

1.	 To make a complete backup of all the data to a file named my-backup.sql, run the
following command:
mysqldump --user=backupuser -p \

 --all-databases > my-backup.sql

2.	 If it completes successfully, mysqldump will place a line similar to the following
command at the end of the output file:
-- Dump completed on <date> <time>

3.	 If a dump fails, an error message will be printed to the screen and the data in
the backup file will end right before the error took place. Checking both the error
message and the end of the backup file can give us important clues to figure out
the failure.

How it works...
The mysqldump program generates backups in SQL formatted text. These backups can then
be restored to the same MariaDB install, to a different MariaDB server, or because they are in
SQL format, to a different database altogether.

Depending on the sizes of the databases in our database server, and whether we choose to
backup all of the databases or just one or two, the backup file created by mysqldump could
potentially be very large. We need to keep this in mind when using this program.

There's more...
The mysqldump program has many options. We will discuss some of the most useful
ones here.

--add-drop-database
The --add-drop-database option causes mysqldump to add SQL commands to the
backup output to drop a given database and then recreate it prior to restoring the data.
This helps us to prevent duplicate data from being written to the database.

--add-drop-table
Similar to the previous option, the --add-drop-table option causes mysqldump to add
SQL commands to the backup output in order to drop the tables prior to recreating them and
inserting data.

Chapter 1

21

--add-locks
The --add-locks option surrounds the table output of the backup with LOCK TABLES and
UNLOCK TABLES statements. When restoring from a backup, locking the tables speeds up
the restore.

Checking and optimizing tables
automatically with mysqlcheck and cron

The mysqlcheck command can check, repair, and optimize tables. When paired with
cron, this bit of regular maintenance can be automated. This recipe is only for Linux
operating systems.

How to do it…
Let's get started by following the ensuing steps:

1.	 Create a new user on the server or choose an existing user account. For this recipe,
we'll say that we have a user called sysuser created just for this purpose.

2.	 Create a user in MariaDB that has SELECT and INSERT privileges on all the
databases. Those are the privileges that are needed for mysqlcheck. For this
recipe, we'll name this user maint.

3.	 Create a .my.cnf file at /home/sysuser/.my.cnf (or wherever sysuser's home
is located) with the following contents:
[client]
user = maint
password=maintuserpassword

4.	 Next, change the mode of the .my.cnf file to only be readable by the sysuser:
sudo chmod 600 /home/sysuser/.my.cnf

5.	 Add the following lines of code to /etc/cron.d/mariadb (create the file if it
doesn't exist):
m h dom mon dow user command
15 23 * * 1 sysuser /usr/bin/mysqlcheck -A --auto-repair
15 23 * * 2-7 sysuser /usr/bin/mysqlcheck -A --optimize

Getting Started with MariaDB

22

How it works...
The /etc/cron.d/ folder contains cron snippet files. The cron daemon looks in this folder and
executes the commands just as it does for the user crontab files. The one key difference is
that because this is a system folder and not a user folder, we need to tell cron which user to run
the command as, which we do between the datetime command and the actual command.

When mysqlcheck is run, like other MariaDB utilities, it will automatically check for a .my.
cnf file in the home directory of the user running it and will pick up options in the [client]
section of that file. This is a perfect place to stick the login information as we can make the
file readable only by that user. This way, we don't need to specify the username and password
of our database maintenance user on the command line.

Two commands are run by the recipe. The first command runs only once a week, and it checks
every database and autorepairs any problems it finds. The second command runs every other
day of the week and optimizes the tables in every database.

There's more…
The mysqlcheck program has many options. Refer to https://mariadb.com/kb/en/
mysqlcheck/ or run the command with --help for a complete list.

One thing to note is that the --analyze (-a), --check (-c), --optimize (-o), and
--repair (-r) options are exclusive. Only the last option on the command line will be used.

Security
Using a nonroot user to run mysqlcheck automatically is a good security precaution.
To make the sysuser even more secure, lock the account so that it can't log in. Refer
to our distribution documentation for how to do this.

Using progress reporting in the mysql client
One relatively unknown feature of MariaDB is the ability of the client to show progress reports
for long commands.

Chapter 1

23

How to do it…
Let's get started by following the ensuing steps:

1.	 There's nothing to configure as progress reporting is turned on by default and works
with the ALTER TABLE, ADD INDEX, DROP INDEX, and LOAD DATA INFILE
commands. It also works with the CHECK TABLE, REPAIR TABLE, ANALYZE
TABLE, and OPTIMIZE TABLE commands when using the Aria storage engine.
For example, if we needed to change a large table from using the MyISAM storage
engine to the Aria storage engine, it might look similar to the following command:
MariaDB [test]> ALTER TABLE my_big_table engine=aria;

Stage: 1 of 2 'copy to tmp table' 29.26% of stage done

2.	 The progress report line will update every 5 seconds until the operation is complete.

How it works...
For the clients that support it, mysqld (the MariaDB server) sends progress report messages
every 5 seconds. The mysql command-line client supports it, as does the mytop shell script
included with MariaDB.

You can easily add support for progress messages on other clients by following the
instructions at https://mariadb.com/kb/en/progress-reporting/. If our favorite
client application does not support progress reporting, encourage the developers to add it!

There's more…
We can change the default 5 second update by setting the progress_report_time
variable to a value greater than 5. Values ranging from 1 to 5 are ignored.

Disabling progress reporting
To disable progress reporting, set the progress_report_time variable to 0 or use the
--disable-progress-reports option when launching the mysql client. Progress
reporting is automatically disabled in batch mode.

Progress reporting in mytop
The mytop script included with MariaDB shows the progress of long running commands in the
'%' column.

2
Diving Deep

into MariaDB

In this chapter, we will cover the following recipes:

ff Importing the data exported by mysqldump

ff Using SHOW EXPLAIN with running queries

ff Using LIMIT ROWS EXAMINED

ff Using INSTALL SONAME

ff Producing HTML output

ff Producing XML output

ff Migrating a table from MyISAM to Aria

ff Migrating a table from MyISAM or Aria to InnoDB or XtraDB

Introduction
Now that we've got our feet wet with MariaDB, it's time to dive deeper and experiment with
some of the useful features of MariaDB.

Importing the data exported by mysqldump
Importing data from a mysqldump backup is easy and quick. In this recipe, we'll import a
backup of the Internet Speculative Fiction Database (ISFDB). This database is licensed
under the Creative Commons Attribution license (CC BY) which allows us to use this database
for this recipe and many of the other recipes in this book.

Diving Deep into MariaDB

26

How to do it...
1.	 Go to http://www.isfdb.org/wiki/index.php/ISFDB_Downloads and

download the latest MySQL 5.5 compatible file. The file will be almost 80 megabytes
and will be named with the date the backup was made. In this recipe, we'll be using
the backup-MySQL-55-2014-02-22.zip file. We can download that file or a more
recent one. If we do use a more recent file, we'll need to update the names in the
following steps.

2.	 After the download finishes, we unzip the file using the following command:
unzip backup-MySQL-55-2014-02-22.zip

3.	 When unzipped, the file will be over 300 megabytes.

4.	 Our next step is to launch the mysql command-line client and create a database to
import into:
CREATE DATABASE isfdb;

5.	 After creating the database, quit the mysql command-line client.

6.	 Lastly, we import the file into MariaDB using the following command:
mysql isfdb < backup-MySQL-55-2014-02-22

7.	 Depending on the speed of our computer processor, the size of the memory we have,
and the speed of our hard drive, the file will be imported in a time span of a few
seconds to a couple of minutes, and the isfdb database will be full of data tables.
We can now go ahead and take a look at it if we're interested.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

How it works...
The special character < sends the contents of the backup-2014-02-22 file to the mysql
command. The mysql command, in turn, is set to connect to the isfdb database we just
created, so that is where the data goes. In addition to the data, the backup file contains the
necessary commands to create all of the necessary tables.

Chapter 2

27

There's more...
To keep the recipe short, I didn't put down any of the usual options for the mysql
command-line client. Depending on how we have things set up, we may need to specify
the user (-u), password (-p), host (-h), or other options. We just need to be sure to put
them before the name of the database (isfdb in the recipe).

See also
ff The full documentation of the mysqldump command can be found at

https://kb.askmonty.org/en/mysqldump/

Using SHOW EXPLAIN with running queries
The SHOW EXPLAIN feature was introduced in MariaDB 10.0. It enables us to get an
EXPLAIN (that is, a description of the query plan) of the query running in a given thread.

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe of this chapter.

How to do it...
1.	 Open a terminal window and launch the mysql command-line client and connect to

the isfdb database.
mysql isfdb

2.	 Next, we open another terminal window and launch another instance of the mysql
command-line client.

3.	 Run the following command in the first window:
ALTER TABLE title_relationships DROP KEY titles;

4.	 Next, in the first window, start the following example query:
SELECT titles.title_id AS ID,

 titles.title_title AS Title,

 authors.author_legalname AS Name,

 (SELECT COUNT(DISTINCT title_relationships.review_id)

 FROM title_relationships

Diving Deep into MariaDB

28

 WHERE title_relationships.title_id = titles.title_id)

 AS reviews

FROM titles,authors,canonical_author

WHERE

 (SELECT COUNT(DISTINCT title_relationships.review_id)

 FROM title_relationships

 WHERE title_relationships.title_id = titles.title_id)>=10

 AND canonical_author.author_id = authors.author_id

 AND canonical_author.title_id=titles.title_id

 AND titles.title_parent=0 ;

5.	 Wait for at least a minute and then run the following query to look for the details of
the query that we executed in step 4 and QUERY_ID for that query:
SELECT INFO, TIME, ID, QUERY_ID

FROM INFORMATION_SCHEMA.PROCESSLIST

WHERE TIME > 60\G

6.	 Run SHOW EXPLAIN in the second window (replace id in the following command line
with the numeric ID that we discovered in step 5):
SHOW EXPLAIN FOR id

7.	 Run the following command in the second window to kill the query running in the
first window (replace query_id in the following command line with the numeric
QUERY_ID number that we discovered in step 5):
KILL QUERY ID query_id;

8.	 In the first window, reverse the change we made in step 3 using the
following command:
ALTER TABLE title_relationships ADD KEY titles (title_id);

How it works...
The SHOW EXPLAIN statement allows us to obtain information about how MariaDB executes
a long-running statement. This is very useful for identifying bottlenecks in our database.

The query in this recipe will execute efficiently only if it touches the indexes in our data.
So for demonstration purposes, we will first sabotage the title_relationships table by
removing the titles index. This causes our query to unnecessarily iterate through hundreds
of thousands of rows and generally take far too long to complete. The output of steps 3 and 4
will look similar to the following screenshot:

Chapter 2

29

While our sabotaged query is running, and after waiting for at least a minute, we switch to
another window and look for all queries that have been running for longer than 60 seconds.
Our sabotaged query will likely be the only one in the output. From this output, we get ID and
QUERY_ID. The output of the command will look like the following with the ID and QUERY_ID
as the last two items:

Diving Deep into MariaDB

30

Next, we use the ID number to execute SHOW EXPLAIN for our query. Incidentally, our query
looks up all titles in the database that have 10 or more reviews and displays the title, author,
and the number of reviews that the title has. The EXPLAIN for our query will look similar to
the following:

An easy-to-read version of this EXPLAIN is available at
https://mariadb.org/ea/8v65g.

Looking at rows 4 and 5 of EXPLAIN, it's easy to see why our query runs for so long. These
two rows are dependent subqueries of the primary query (the first row). In the first query, we
see that 117044 rows will be searched, and then, for the two dependent subqueries, MariaDB
searches through 83389 additional rows, twice. Ouch.

If we were analyzing a slow query in the real world at this point, we would fix the query to not
have such an inefficient subquery, or we would add a KEY to our table to make the subquery
efficient. If we're part of a larger development team, we could send the output of SHOW
EXPLAIN and the query to the appropriate people to easily and accurately show them what
the problem is with the query. In our case, we know exactly what to do; we will add back the
KEY that we removed earlier.

For fun, after adding back the KEY, we could rerun the query and the SHOW EXPLAIN
command to see the difference that having the KEY in place makes. We'll have to be quick
though, as with the KEY there, the query will only take a few seconds to complete (depending
on the speed of our computer).

There's more...
The output of SHOW EXPLAIN is always accompanied by a warning. The purpose of this
warning is to show us the command that is being run. After running SHOW EXPLAIN on a
process ID, we simply issue SHOW WARNINGS\G and we will see what SQL statement the
process ID is running:

Chapter 2

31

This is useful for very long-running commands that after their start, takes a long time to execute,
and then returns back at a time where we might not remember the command we started.

In the examples of this recipe, we're using "\G" as the delimiter
instead of the more common ";" so that the data fits the page
better. We can use either one.

See also
ff Some long-running queries can consume more resources than they are worth, and in

those cases, the Using LIMIT ROWS EXAMINED recipe is helpful

ff The full documentation of the KILL QUERY ID command can be found at
https://mariadb.com/kb/en/data-manipulation-kill-connection-
query/

ff The full documentation of the SHOW EXPLAIN command can be found at
https://mariadb.com/kb/en/show-explain/

Diving Deep into MariaDB

32

Using LIMIT ROWS EXAMINED
The LIMIT ROWS EXAMINED clause is a good way to minimize the overhead of a very large
or otherwise expensive query if we don't necessarily want or need to search every row in a
large table or set of tables.

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe, earlier in this chapter.

How to do it...
1.	 Open a terminal window and launch the mysql command-line client and connect to

the isfdb database.

2.	 Run the following query from the Using SHOW EXPLAIN with running queries recipe,
with one small addition at the end:

SELECT titles.title_id AS ID,

 titles.title_title AS Title,

 authors.author_legalname AS Name,

 (SELECT COUNT(DISTINCT title_relationships.review_id)

 FROM title_relationships

 WHERE title_relationships.title_id = titles.title_id)
 AS reviews

FROM titles,authors,canonical_author

WHERE

 (SELECT COUNT(DISTINCT title_relationships.review_id)

 FROM title_relationships

 WHERE title_relationships.title_id = titles.title_id)
 >= 10

 AND canonical_author.author_id = authors.author_id

 AND canonical_author.title_id=titles.title_id

 AND titles.title_parent=0

LIMIT ROWS EXAMINED 10000;

Chapter 2

33

How it works...
The LIMIT clause allows us to reduce the output of a SELECT query, but the full query is
still run. On very large tables, because the full query is still being run, it may consume more
resources than we would like. In MariaDB, we can use LIMIT ROWS EXAMINED to specify
the number of rows we want the server to examine when executing our statement, thus
minimizing the resources the query needs to use during execution.

This feature was designed to benefit queries running in something like a production
web application where speed is critically important, possibly more so than having a
complete answer.

LIMIT ROWS EXAMINED is also useful when testing a new query that we suspect will take a
long time to run and consume a lot of resources. It's like testing on a subset of our full data
without having to actually export and set up such a set. Instead, we can test on a full copy of
our data, but with limits so that our testing is faster.

There's more...
Just because we are limiting the number of rows examined doesn't mean we can't also limit
the output. We also need to be aware of the warnings this command gives.

Using LIMIT with LIMIT ROWS EXAMINED
When using LIMIT ROWS EXAMINED, we can still LIMIT the output to a specific number of
rows. For example, we can examine 10000 rows and limit the output to the first 100 using the
following command line:

LIMIT 100 ROWS EXAMINED 10000

Warning of incomplete results
With the limit set to 10000 rows, the query in this recipe completes quickly, but it comes with
the following warning:

Query execution was interrupted. The query examined at least 10002
rows, which exceeds LIMIT ROWS EXAMINED (10000). The query result
may be incomplete.

This warning is understandable. We told the server we only wanted it to examine 10000 rows,
and so it did, and then quit. But the full query needs to examine many more rows than that,
and so the results we received are incomplete, and the server is letting us know.

Diving Deep into MariaDB

34

Using INSTALL SONAME
The INSTALL SONAME command is used to install plugins in MariaDB. In this recipe,
we'll install the Cassandra storage engine.

How to do it...
1.	 Connect to MariaDB using the mysql command-line client with a user that has the

INSERT privilege on the mysql.plugins table. The root user has this privilege,
but other users might as well.

2.	 Install the Cassandra storage engine plugin using the following command line:
INSTALL SONAME 'ha_cassandra';

3.	 Issue the SHOW plugins; command and look for the following text:
| CASSANDRA | ACTIVE | STORAGE ENGINE | ha_cassandra.so | GPL |

4.	 Next, issue the SHOW STORAGE ENGINES; command and look for the following text:
| CASSANDRA | YES | Cassandra storage engine| NO | NO | NO |

5.	 The preceding output indicates that the Cassandra storage engine is installed
and ready to go. The three NO columns are about transactions, distributed XA
transactions, and savepoints, respectively. All three are features that the
Cassandra storage engine does not support.

How it works...
When this command is run, the server looks in the configured plugin directory and loads the
plugin with that name. We do not need to specify the file extension. The actual name of the
ha_cassandra file will either be ha_cassandra.dll or ha_cassandra.so on Windows
and Linux respectively.

There's more...
Installing plugins is not very difficult in MariaDB but there are some things that can trip us up
if we're not careful.

Plugin names versus filenames
The name of a given plugin is defined in the data structures inside the plugin. The filename
is the name of the file that contains the plugin. The two are similar, but they are not the
same. For example, the name of the Cassandra storage engine plugin is CASSANDRA and the
filename is ha_cassandra.so. The name is case insensitive, so when referring to it we can
use CASSANDRA, Cassandra, cassandra, or even CaSsAnDrA if we want. The filename,
on the other hand, is case sensitive if our underlying filesystem is case sensitive.

Chapter 2

35

INSTALL SONAME versus INSTALL PLUGIN
The INSTALL SONAME command is just a variation of the INSTALL PLUGIN command. The
main difference is that INSTALL PLUGIN requires two sets of information, the name and the
filename, and INSTALL SONAME just needs the filename. The filename must be quoted. Here
is the recipe using INSTALL PLUGIN:

INSTALL PLUGIN Cassandra SONAME 'ha_cassandra';

Apart from being shorter, INSTALL SONAME is no different from INSTALL PLUGIN,
functionality-wise.

See also
ff The complete documentation of the INSTALL SONAME command can be found

at https://mariadb.com/kb/en/install-soname/

ff The complete documentation of the Cassandra storage engine can be found at
https://kb.askmonty.org/en/cassandra/

Producing HTML output
The mysql command-line client has several different output options. One of these is HTML.

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe in this chapter. Create a file called isfdb-001.sql using the following command line:

SELECT * FROM authors LIMIT 100;

We could put whatever commands we want in this file, or give it a different name, but this
works for the purposes of this recipe.

How to do it...
1.	 Open a terminal and navigate to where we saved the isfdb-001.sql file.

2.	 Issue the following command on the command line (not from within the mysql
command-line client, but by calling the client with some special options):
mysql --html isfdb < isfdb-001.sql > isfdb-001.html

3.	 Execute either a dir or ls command and we'll see that now there is a file named
isfdb-001.html in the directory.

4.	 We can now either open the newly created isfdb-001.html file in our favorite text
editor, or view it in a web browser, such as Firefox, Chrome, or Opera.

Diving Deep into MariaDB

36

How it works...
When the --html flag is passed on the command line, the mysql command-line client will
spit out an HTML table instead of a regular output; no headers, footers, or DOCTYPE, just a
table with the results as one long string.

On the command line, we use the < and > redirectors to read in the isfdb-001.sql file and
then to direct the output to the isfdb-001.html file, respectively.

There's more...
The HTML output that the mysql command-line client produces is not pretty. What's more,
it's not a completely valid HTML file as there's no DOCTYPE, no <head> section, no <body>
section, no <title>, and so on. The file we created begins with a <TABLE> tag and ends
with a closing </TABLE> tag. And yes, all the tags use the old uppercase style of writing
HTML code.

In Linux, there is an easy way to remedy this using the Tidy program. If it is not already
installed, it is easy to do so using our package manager. To clean up our HTML, add spaces
and indentation, change the case of the tags to lowercase, and add a DOCTYPE and all the
necessary sections. We will simply modify our recipe to the following command line:

mysql --html isfdb < isfdb-001.sql | tidy -q -i -o isfdb-001.html

Tidy will detect the appropriate DOCTYPE, change the case of the tags, indent the code, and
add in the missing sections.

Of course, even tidied up, HTML output is of limited use. It is, however, something the mysql
command-line client can do.

See also
ff The full documentation of the mysql command-line client can be found at

https://kb.askmonty.org/en/mysql-command-line-client/

Producing XML output
The mysql command-line client has several different output options. One of these is XML.

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe in this chapter. Create a file called isfdb-001.sql using the following command line:

SELECT * FROM authors LIMIT 100;

Chapter 2

37

We could put whatever commands we want in this file, or give it a different name, but this
works for the purposes of this recipe. This file has the same name and contents as the file
used in the previous recipe. If we've already completed that recipe, we can just reuse the
same file.

How to do it...
1.	 Open a terminal and navigate to where we saved the isfdb-001.sql file.

2.	 Issue the following command on the command line (not from within the mysql
command-line client, but by calling the client with some special options):
mysql --xml isfdb < isfdb-001.sql > isfdb-001.xml

3.	 Execute either a dir or ls command and we'll see that there is now a file named
isfdb-001.xml in the directory.

4.	 To see the contents of the file, open it with our favorite text editor or an XML viewer.

How it works...
When the --xml flag is passed on the command line, the mysql command-line client will
output a well-formed XML file, instead of a regular output.

On the command line we use the < and > redirectors to read in the isfdb-001.sql file and
then to direct the output to the isfdb-001.xml file, respectively.

See also
ff The full documentation of the mysql command-line client can be found at

https://kb.askmonty.org/en/mysql-command-line-client/

Migrating a table from MyISAM to Aria
MariaDB ships with the MyISAM and Aria storage engines, among many others. The main
difference between these two is that Aria is crash safe, whereas MyISAM is not. Being crash
safe means that an Aria table can recover from catastrophic power loss or other unexpected
failures in a much better way than a MyISAM table can. If we use MyISAM tables, an easy
upgrade is to convert them to Aria tables.

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe in this chapter.

Diving Deep into MariaDB

38

How to do it...
1.	 Open the mysql command-line client and connect to the isfdb database.

2.	 Run the following command line:
ALTER TABLE authors ENGINE=Aria;

3.	 The ALTER command will then change the table so that it uses the Aria
storage engine.

4.	 After it has finished, a message similar to the following will be displayed:
Query OK, 110829 rows affected (3.14 sec)

Records: 110829 Duplicates: 0 Warnings: 0

5.	 If our system is older or is under heavy load and it takes longer than 5 seconds
for ALTER TABLE to complete, we'll see a progress message letting us know
how much of the task has been completed, updated every 5 seconds, until the
task is finished.

How it works...
The ALTER TABLE command changes a table in two stages. First, it creates a new table
identical in every way to the old table, except that the new table has the changes specified by
the command. In our case, the only change is to use the Aria storage engine instead of the
MyISAM storage engine. Then, the command copies all of the data to the new table.

In the second stage, ALTER TABLE removes the old table and renames the new table with
the name of the old table.

On a table like authors that only has around a hundred thousand rows, the conversion is
quick and easy; however, on a table with several billion rows, the conversion process will
take significantly longer.

See also
ff The full documentation of the ALTER TABLE command can be found at

https://kb.askmonty.org/en/alter-table/

Chapter 2

39

Migrating a table from MyISAM or Aria to
InnoDB or XtraDB

The default storage engine of MariaDB is XtraDB, which is an enhanced version of InnoDB.

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe in this chapter.

How to do it...
1.	 Open the mysql command-line client and connect to the isfdb database.

2.	 Run the following command line:
ALTER TABLE awards ENGINE=InnoDB;

3.	 After the command line gets executed, a message similar to the following will
be displayed:
Query OK, 33102 rows affected (5.37 sec)

Records: 33102 Duplicates: 0 Warnings: 0

4.	 If our system is older or is under heavy load and it takes longer than 5 seconds
for the ALTER TABLE command line execution to complete, we'll see a progress
message letting us know how much of the task has been completed. The message
gets updated every 5 seconds, until the task is finished.

How it works...
The ALTER TABLE command converts the table over in two stages. First, it creates a new
table, identical in every way to the old table, except that the new table uses the InnoDB or
XtraDB storage engine (whichever we have configured as the active one) and copies all of
the data to the new table.

In the second stage, ALTER TABLE removes the old table and renames the new table with
the name of the old table.

On a table like awards that only has thirty thousand or more rows, the conversion is quick
and easy; however, on a table with several billion rows, the conversion process will take
significantly longer.

Diving Deep into MariaDB

40

There's more...
Before converting all of the tables in a database from MyISAM or Aria to InnoDB/XtraDB,
be aware that InnoDB/XtraDB uses more memory when running for the same amount of
activity. Make sure our server has the memory capacity to handle it.

See also
ff The full documentation for InnoDB and XtraDB can be found at

https://kb.askmonty.org/en/xtradb-and-innodb/

ff Full documentation of the ALTER TABLE command can be found at
https://kb.askmonty.org/en/alter-table/

3
Optimizing and

Tuning MariaDB

In this chapter, we will cover the following recipes:

ff Using SHOW STATUS to check whether a feature is being used

ff Controlling MariaDB optimizer strategies

ff Using extended Keys with InnoDB and XtraDB

ff Configuring the Aria two-step deadlock detection

ff Configuring the MyISAM segmented key cache

ff Configuring threadpool

ff Configuring the Aria pagecache

ff Optimizing queries with the subquery cache

ff Optimizing semijoin subqueries

ff Creating an index

ff Creating a full-text index

ff Removing an index

ff Using JOINs

ff Using microseconds in DATETIME columns

ff Updating the DATETIME and TIMESTAMP columns automatically

Optimizing and Tuning MariaDB

42

Introduction
This chapter contains recipes for configuring and using various optimization and tuning-
related features of MariaDB. This chapter is not meant as a complete or even a partial
MariaDB optimization and tuning guide; it only contains recipes related to the topic.

Using SHOW STATUS to check if a feature is
being used

The SHOW STATUS command shows information about the server. This includes things such
as the number of bytes of data received and sent by the server, the number of connections
served, the number of rows read, and so on. The command can also be used to check
whether a feature has been enabled or is being used.

How to do it...
1.	 Launch the mysql command-line client and connect to our MariaDB database server.

2.	 Uninstall the Cassandra storage engine with:
UNINSTALL SONAME 'ha_cassandra.so';

3.	 MariaDB will either respond with a Query OK message (if the Cassandra storage
engine was installed and has now been uninstalled) or it will give the SONAME ha_
cassandra.so does not exist error (if the Cassandra storage engine was not
installed). Either of the messages is ok.

4.	 Issue the following SHOW STATUS command to see if the Cassandra storage engine
is installed. The result will be an Empty set, which means that it is not installed:
SHOW STATUS LIKE 'Cassandra%';

5.	 Install the Cassandra storage engine with the following command, and the result will
be Query OK:
INSTALL SONAME 'ha_cassandra.so';

6.	 Issue the SHOW STATUS command from step 3 again. This time, an output similar to
the following screenshot will be displayed:

Chapter 3

43

How it works...
The SHOW STATUS output gives us two different sets of information in this recipe. Firstly, the
actual presence of the Cassandra% variables tells us that the Cassandra storage engine is
installed. Secondly, it shows us some useful information about our usage of the Cassandra
storage engine since it was installed (or the server was last restarted) and if there have been
any exceptions. Since we just installed the plugin, all the values will likely be zeroes unless we
have an active application that used the plugin between the time when we ran the INSTALL
and SHOW STATUS commands.

There's more...
In the recipe, we modified the full SHOW STATUS output to restrict it just to the information on
the Cassandra storage engine by adding LIKE 'Cassandra%' to the end of the command.
We could also just add the following line of command to get the complete output:

SHOW STATUS;

There is a lot of output, so it is often better to use LIKE and some text with the wildcard
character (%) to shorten the output to just what we want to know.

Many plugins and storage engines in MariaDB provide the STATUS variables that are
useful when we want to know how the engine or plugin is operating. However, not all do; the
preferred method to check whether a given plugin or storage engine is installed is to use the
SHOW PLUGINS; command.

Optimizing and Tuning MariaDB

44

See also
ff The full documentation of the SHOW STATUS command is available at

https://mariadb.com/kb/en/show-status/

ff The full documentation of the SHOW PLUGINS command is available at
https://mariadb.com/kb/en/show-plugins/

Controlling MariaDB optimizer strategies
Starting with MariaDB 5.3 and continuing with all major releases since, various optimizations
have been introduced that improve the core performance of MariaDB. To keep upgrades
as compatible and as trouble-free as possible or because it is only useful in certain limited
instances, many of these optimizations are turned off by default. This recipe is about enabling
optimizations which are turned off by default.

In this recipe, we will enable the Multi-Range Read optimizations, but the basic concepts
apply to control any of the optimizer_switch flags.

How to do it...
1.	 Launch the mysql command-line client application and connect to our MariaDB

server as the root user or as a user with the SUPER privilege.

2.	 Show the current status of all optimizer_switch flags with the following command:
SELECT @@optimizer_switch\G

3.	 The output of the previous command will be similar to the following screenshot. There
may be some differences depending on our local server settings.

Chapter 3

45

4.	 In the output, the mrr, mrr_cost_based, and mrr_sort_keys flags are all set to
off. Enable them with the following command:
SET optimizer_switch="mrr=on";

SET optimizer_switch="mrr_cost_based=on";

SET optimizer_switch="mrr_sort_keys=on";

5.	 Run the SELECT command from step 2 and confirm that the three mrr flags are now
set to on.

How it works...
The optimizer_switch variable is basically a list of flags, which shows the status of the
various available optimization strategies. When we use the SET command, we can turn
various individual flags off and on. Any flags that we do not name in the SET command
remain as they are.

There's more...
By default, the SET command only sets the variables for our current session. If we quit the
client or we are disconnected for some reason and then we reconnect, the flags will be set to
what they were before the changes were made.

To make our changes until MariaDB is shut down or restarted, add GLOBAL to the command
as follows:

SET GLOBAL optimizer_switch="mrr=on";

If we want to make the change permanent, so that an optimization is either on or off
permanently, we need to add it to our my.cnf or my.ini file. For example, to turn on all
the mrr optimizations, add the following lines of code to the end of the file (or to an existing
[mysqld] section):

[mysqld]
optimizer_switch = "mrr=on, mrr_cost_based=on,mrr_sort_keys=on"

Restart MariaDB to activate the changes.

See also
ff The full documentation of the optimizer_switch is found at https://mariadb.

com/kb/en/optimizer-switch/ and https://mariadb.com/kb/en/
server-system-variables/#optimizer_switch

ff The documentation of the Multi-Range Read optimizations is available at
https://mariadb.com/kb/en/multi-range-read-optimization/

Optimizing and Tuning MariaDB

46

Using extended keys with InnoDB and
XtraDB

When creating an execution plan for a query, the MariaDB optimizer makes a cost-based
decision about whether or not to use one or more indexes instead of reading through a
table row-by-row. Indexes are often, but not always the faster choice. The extended key's
optimization improves the index lookups for InnoDB and XtraDB tables.

How to do it...
1.	 Launch the mysql command-line client application and connect it to our MariaDB

server as the root user or as a user with the SUPER privilege.

2.	 Enable the extended keys optimization with the following command:
SET GLOBAL optimizer_switch='extended_keys=on';

3.	 Add the following code to our my.cnf or my.ini file (or to an existing
[mysqld] section):
[mysqld]

4.	 optimizer_switch = 'extended_keys=on' verifies that extended_keys is
set to on with the following command:

SHOW VARIABLES LIKE 'optimizer_switch'\G

How it works...
In this recipe, we turn on the extended_keys optimization globally for the running server
and we then make the change permanent by adding it to our my.cnf config file. In this way,
we turn the feature on, and then ensure that it stays on, without having to restart MariaDB.

There's more...
Many InnoDB or XtraDB tables have more than one key, for example, a primary key on the
id column and a secondary key on the username column. Using the extended_keys
optimization, MariaDB is able to create execution plans for some queries, which only touch
the indexes of those keys. It does this by looking at the keys, and if all of the information that
we are looking for is present, MariaDB uses that information instead of looking through tables
row by row.

Chapter 3

47

See also
ff The full documentation of the extended keys optimization is available at

https://mariadb.com/kb/en/extended-keys/

ff A blog post about the development of this feature is available at
http://igors-notes.blogspot.com/2011/12/3-way-join-that-
touches-only-indexes.html

Configuring the Aria two-step deadlock
detection

A deadlock is when there are two competing actions and both are waiting for the other to
finish and so neither of them ever finish. The Aria storage engine is able to automatically
detect and deal with deadlocks. To make effective use of this feature, we should configure
it with the settings that work well for our needs.

How to do it...
1.	 Run the following command to show the current settings for Aria's two-step

deadlock detection:
SHOW VARIABLES LIKE 'deadlock_%'\G

2.	 If our settings are set to the default values, the output of the previous command will
be as shown in the following screenshot:

Optimizing and Tuning MariaDB

48

3.	 Change the variables to our desired values, as follows:
SET GLOBAL deadlock_search_depth_short = 3;

SET GLOBAL deadlock_search_depth_long = 10;

SET GLOBAL deadlock_timeout_long = 10000000;

SET GLOBAL deadlock_timeout_short = 5000;

4.	 Make the changes permanent by adding the following lines of code to the bottom of
our my.cnf or my.ini file (or to an existing [mysqld] section):

[mysqld]
deadlock_search_depth_short = 3
deadlock_search_depth_long = 10
deadlock_timeout_long = 10000000
deadlock_timeout_short = 5000

How it works...
If the Aria storage engine attempts to create a lock and is unable to do so, the possibility of
having a deadlock exists. We only want to kill actual deadlocks and not a situation that will
resolve itself in an amount of time for which we are comfortable waiting.

To detect deadlocks, whenever Aria cannot create a lock on a table, it first creates a wait-for
graph of the possible deadlock with a search depth equal to deadlock_search_depth_
short. If, after the search, the lock on the table still exists and Aria cannot determine
if it is a deadlock, it will wait for the number of microseconds defined by the value of
deadlock_timeout_short and then try again. If it is still unsuccessful, Aria will create a
wait-for graph with a search depth equal to the value of deadlock_search_depth_long,
and if a deadlock has still not been identified, Aria will wait for the number of microseconds
defined by the value of deadlock_timeout_long and then time out with an error.

If a deadlock is detected at any point during the previous steps, Aria will determine the thread
responsible for it and kill it, thereby releasing the deadlock and allowing a lock to be made
and released as normal.

There's more...
It's important to remember that the deadlock_timeout_short and deadlock_timeout_
long variables are defined in microseconds, not milliseconds or seconds. So a value of
10000000 is equal to ten seconds and a value of 5000 is equal to five-thousandths of a second.

For many users, the default timeout values of 50000000 (50 seconds) for the long timeout
and 10000 (one-hundredth of a second) for the short timeout are perfectly adequate. The
same is also true for the default values of the search depth variables. That said, it might be
useful to experiment with different values if we're experiencing a lot of timeouts.

Chapter 3

49

See also
ff The full documentation of Aria two-step deadlock detection is available at

https://mariadb.com/kb/en/aria-two-step-deadlock-detection/

ff The syntax documentation of the various deadlock options is available at
https://mariadb.com/kb/en/aria-server-system-variables/

ff For more information on wait-for graphs and deadlocks, refer to
http://en.wikipedia.org/wiki/Wait-for_graph and
http://en.wikipedia.org/wiki/Deadlock

Configuring the MyISAM segmented key
cache

We can dramatically improve the performance of our MyISAM tables by splitting the key
cache into multiple segments. This is useful if we have high concurrency in our database
usage (meaning there are lots of threads trying to access the key cache).

How to do it...
1.	 Launch the mysql command-line client application and connect to our MariaDB

server as the root user or as a user with the SUPER privilege.

2.	 View the current number of segments with the following command:
SHOW VARIABLES LIKE 'key_cache_segments'\G

3.	 Set the number of segments to 64 with the following command:
SET GLOBAL key_cache_segments = 64;

4.	 Make the setting permanent by adding the following lines of code to the end of our
my.cnf or my.ini file (or to an existing [mysqld] section):

[mysqld]
key_cache_segments = 64

How it works...
Whenever a MyISAM thread accesses the key cache, it needs to first acquire a lock. Lots of
threads trying to get a lock on a single, monolithic key cache is a big choke point for large,
busy MyISAM tables. Splitting the key cache into multiple segments reduces lock contention
as a given thread only needs to lock the specific segment of the key cache that it needs, and
not the entire key cache.

Optimizing and Tuning MariaDB

50

The key_cache_segments variable controls both the number of segments and checks
whether or not the feature is turned on. A value of 0 (zero) turns off the feature and values
of 1 or more turn on the feature and set the number of segments to use. To prevent upgrade
issues with the old versions of MariaDB that don't have this feature, it is turned off by default.

There's more...
There are a few things we need to be aware of when configuring the segmented key cache.

Setting the number of segments to 1
It is possible to set the number of key cache segments to 1, which we might assume would
be equal to turning the feature off, but it is not. Setting the number of segments to 1 tells
MariaDB to activate and use the segmented key cache code, but with only one segment,
which is actually more inefficient than the old, non-segmented code that is used when the
number of segments is set to 0. So, while it is possible to set the key_cache_segments
variable to 1, we never want to do so in practice.

Determining the optimal number of segments
The only way to determine the optimal number of segments is through testing and
benchmarking with the key_cache_segments variable set to various values. Benchmarks
run by the MariaDB developers suggest that 64 is a good number of segments to use, but this
may not be true for our specific workload.

Other key cache variables
The other variables related to MyISAM key caches are key_buffer_size, key_cache_age_
threshold, key_cache_block_size, and key_cache_division_limit that have all
been updated to work equally well with both segmented and non-segmented key caches. There
is no need to change or alter them when turning on or adjusting the segmented key cache.

See also
ff The full documentation of the MyISAM segmented key cache is available at

https://mariadb.com/kb/en/segmented-key-cache/

ff The results from some segmented key cache benchmarks are available at
https://mariadb.com/kb/en/segmented-key-cache-performance/

Configuring threadpool
Pool-of-threads, or threadpool, is a MariaDB feature that improves performance by pooling
active threads together instead of the old one thread per client connection method, which
does not scale well for typical web-based workloads with many short-running queries.

Chapter 3

51

How to do it...
1.	 To enable threadpool on Linux, add the following line of code to our my.cnf file

(or to an existing [mysqld] section) and then restart MariaDB:
[mysqld]
thread_handling = pool-of-threads

2.	 To enable threadpool on Windows, we don't have to do anything as it is set by default
and uses the native Windows thread pooling.

3.	 To disable threadpool on Windows, add the following to our main my.ini file and
then restart MariaDB:
[mysqld]

thread_handling = one-thread-per-connection

4.	 To disable threadpool on Linux, either change the thread_handling line to one-
thread-per-connection, as on Windows, or remove the thread_handling line
from our system's my.cnf file, and then restart MariaDB.

How it works...
When threadpool is enabled, MariaDB pools the threads together and automatically grows
and shrinks the size of the pool as required. It also makes the best use of the underlying
operating system's low-level thread pooling functionality. Threadpool is ideal if our workload
includes many relatively short queries and the load is CPU-bound, as in Online Transaction
Processing (OLTP) and other common website-style workloads. Threadpool is not ideal if
our workload has long periods of quiet punctuated by short periods of high traffic. This can
be mitigated somewhat through the use of the thread_pool_min_threads variable on
Windows and the thread_pool_idle_timeout variable on Linux.

We may also run into issues with threadpool if we need our queries to always finish quickly
no matter what because with threadpool, even short queries may be queued for later
execution. Issues may also arise if we have many long, unyielding, and concurrent
queries, such as in a data warehouse and we bump up against the limits defined by
the thread_pool_stall_limit and thread_pool_max_threads variables.

There's more...
The goal for MariaDB's threadpool implementation is for it to have a good performance out
of the box, with no need to tweak the settings in most cases. However, there are several
settings that can be tweaked to get even better performance in some cases and with certain
workloads. There are also some differences between the threadpool on Windows and Linux
because of the functionality in which the underlying operating system's thread pooling works.

Optimizing and Tuning MariaDB

52

The thread_pool_stall_limit, thread_pool_max_threads,
and extra_port variables
We can potentially run into an issue if our workload includes many long-running queries.
The thread_pool_stall_limit variable defines, in milliseconds, how long until a running
thread is considered to be stalled. The default is 500. If there is a stalled query, MariaDB will
create a new running thread, up to the value of the thread_pool_max_threads variable.
The default value for this variable is also 500.

If the maximum number of threads reach the thread_pool_max_threads limit, no new
threads will be created, even if the threads are stalled. This could prevent an administrator
from connecting to the server to resolve an issue with many stuck threads.

One solution to this is to set the extra_port variable. When this variable is defined, an
additional port is opened and can be used by an administrator to connect to the server in
situations where connecting using the default port is impossible. The extra_port variable
must be set to a value different from the port variable.

The thread_pool_idle_timeout variable
The thread_pool_idle_timeout variable defines how long, in seconds, a thread should
wait before it is retired. The default value is 60. If we find that we're regularly creating new
threads soon after others have been retired, it might be a good idea to increase this variable.

Pool-of-threads differences on Windows and Linux
Pool-of-threads tries to be as efficient as possibly it can be. One way it does this is by using the
native thread pooling of the underlying operating system. This leads to a couple of differences
between the Linux and Windows versions.

MariaDB on Windows has a variable, threadpool_min_threads, which allows us to specify
the minimum number of threadpool threads that should be always kept alive. The default
value is one. Windows will retire unused threads down to the minimum number and if our
database has a sudden burst of traffic, which requires several new pools to be created, it
could take a few seconds for MariaDB to create them. If we expect such bursty traffic, we can
specify a number of threads to always be kept alive. This variable is not available on Linux.

Linux versions of MariaDB have their own variable, thread_pool_size, which is not
available on Windows. This variable controls the number of thread groups. By default, this
is the number of processors on our server. Clients connecting to Linux-based systems are
grouped together into a thread group. There is a reason to lower the default value if, for
example, we are using the taskset utility to run MariaDB on a set of dedicated processors.
There may also be causes to increase this value if, for example, our CPU-bound workload is
not fully utilizing our CPUs.

Chapter 3

53

See also
ff The full documentation of pool-of-threads is found at

https://mariadb.com/kb/en/thread-pool/

ff The comparison of threadpool versus thread-per-connection performance can
be found at http://blog.mariadb.org/mariadb-5-5-thread-pool-
performance/

ff Additional pool-of-threads benchmarks can be found at
https://mariadb.com/kb/en/threadpool-benchmarks/

Configuring the Aria pagecache
One difference between the Aria and MyISAM storage engines is Aria's PAGE row format. This
is the default row format for Aria tables and must be used to take advantage of the crash-safe
features of this storage engine.

A primary advantage of this row format is that rows are efficiently cached, which gives better
performance. They also do not fragment as easily as the alternative DYNAMIC row format,
and updates to them are quicker. The Aria pagecache is controlled by three variables.

How to do it...
1.	 Launch the mysql command-line client application and connect to our MariaDB

server as the root user or as a user with the SUPER privilege.

2.	 View the current Aria pagecache settings with the following command:
SHOW VARIABLES LIKE 'aria_pagecache%';

3.	 The output will look like the following screenshot:

Optimizing and Tuning MariaDB

54

4.	 Add the following lines of code to the end of our system's my.cnf or my.ini file
(or to an existing [mysqld] section in the file), and then restart MariaDB:
[mysqld]
aria_pagecache_buffer_size = 536870912
aria_pagecache_age_threshold = 400
aria_pagecache_division_limit = 90

5.	 Check on the status of the Aria pagecache with the following command:

SHOW STATUS LIKE '%aria_pagecache%';

How it works...
The aria_pagecache_buffer_size variable should be set as large as we can afford. It
is specified in bytes. In our recipe, we increased it from the default value of 128 MB to 512
MB. This variable may not be altered dynamically. It must be set in the server configuration
file. Determining how much we can afford is tricky and will vary wildly from server to server.
In general, if we make extensive use of Aria tables in our databases and we have RAM that is
just sitting idle, we should increase aria_pagecache_buffer_size to use some of it.

The aria_pagecache_age_threshold variable controls how long a block in the
pagecache will remain there without being accessed. The value is a ratio of the number of
times the pagecache is accessed to the number of blocks in the pagecache. In our recipe,
we increased this value from the default 300 to 400, which has the effect of keeping
pagecache blocks last longer. This variable can also be altered dynamically using the
mysql command-line client, for example, with the following command:

SET GLOBAL aria_pagecache_age_threshold = 400;

The aria_pagecache_division_limit variable specifies the minimum percentage of the
pagecache that must be warm. In our recipe, we changed it from 100 percent to 90 percent.
This variable can also be altered dynamically by using the mysql command-line client, with
the following command:

SET GLOBAL aria_pagecache_division_limit = 90;

There's more...
It's worth experimenting with these variables to see how they affect performance on our
server's workload. In the case of the aria_pagecache_buffer_size variable, larger
value is almost always better, unless we specify a value too high for our available RAM.

Chapter 3

55

See also
ff The full documentation of the Aria storage engine is available at

https://mariadb.com/kb/en/aria/

ff Some Aria benchmark results are available at
https://mariadb.com/kb/en/benchmarking-aria/

ff More information on Aria's three storage formats (FIXED, DYNAMIC, and PAGE) is
available at https://mariadb.com/kb/en/aria-storage-formats/

Optimizing queries with the subquery cache
The subquery cache is one of the several methods utilized by MariaDB to improve the
performance of statements with subqueries. This is a feature unique to MariaDB and
makes subqueries in MariaDB much faster than competing databases.

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe in Chapter 2, Diving Deep into MariaDB.

How to do it...
1.	 Restart MariaDB to clear the subquery cache.

2.	 Launch the mysql command-line client application and connect to the isfdb
database on our MariaDB server.

3.	 Run the following command to show our usage of the subquery cache:
SHOW STATUS LIKE 'subquery%';

4.	 Because we just restarted MariaDB and cleared the subquery cache, the output will
look like the following screenshot:

Optimizing and Tuning MariaDB

56

5.	 Run the following query:
SELECT titles.title_id AS ID,

 titles.title_title AS Title,

 authors.author_legalname AS Name,

 (SELECT COUNT(DISTINCT title_relationships.review_id)

 FROM title_relationships

 WHERE title_relationships.title_id = titles.title_id)

 AS reviews

FROM titles INNER JOIN authors INNER JOIN canonical_author

ON

 (SELECT COUNT(DISTINCT title_relationships.review_id)

 FROM title_relationships

 WHERE title_relationships.title_id = titles.title_id)

 >= 12

 AND canonical_author.author_id = authors.author_id

 AND canonical_author.title_id=titles.title_id

 AND titles.title_parent=0;

6.	 Run the SHOW STATUS command from step 2 again. This time the output will look
similar to the following screenshot:

How it works...
The subquery cache is enabled by default in MariaDB. So there's nothing we have to do to
start using it other than to run some queries with subqueries in them, which is what this
recipe does. The two subquery-related STATUS variables show us how many times a subquery
was able to make use of the cache (subquery_cache_hit) and how many times a subquery
was not able to make use of the cache (subquery_cache_miss).

Chapter 3

57

There's more...
To check if a query will be able to make use of the subquery cache before we actually run it,
we can preface our query with EXPLAIN EXTENDED. The explanation will be accompanied by
at least one warning. We will then run SHOW WARNINGS and the warning note containing our
query will have the <expr_cache> text in it, if the subquery cache is used.

See also
ff The full documentation of the subquery cache is available at

https://mariadb.com/kb/en/subquery-cache/

ff Some benchmarks demonstrating the benefit of the subquery cache are available at
http://mysqlmaniac.com/2012/what-about-the-subqueries/

Optimizing semijoin subqueries
MariaDB includes several optimizations specifically targeted at semijoin subqueries. Semijoin
subqueries are primarily the ones in which the subquery is an IN subquery located in the
WHERE clause of our SQL statement. An example will be something like the following from
the popular DBT3 benchmarking dataset:

SELECT * FROM part
WHERE p_partkey IN
 (SELECT l_partkey FROM lineitem
 WHERE l_shipdate between '1997-01-01' and '1997-02-01')
ORDER BY p_retailprice DESC LIMIT 10;

How to do it...
1.	 Launch the mysql command-line client application and connect to our MariaDB

server as the root user or as a user with the SUPER privilege.

2.	 Run the following command to enable the exists_to_in optimization:
SET GLOBAL optimizer_switch='exists_to_in=on';

3.	 Make the change permanent by adding the following lines of code to the end of our
my.cnf or my.ini file (or by adding it to an existing [mysqld] section):
[mysqld]
optimizer_switch = 'exists_to_in=on';

Optimizing and Tuning MariaDB

58

How it works...
MariaDB has several subquery optimization strategies. Most of these are enabled by default.
MariaDB evaluates the enabled strategies and chooses the best one for the subquery we are
running. There is one that is not enabled by default, and that is the exists_to_in strategy;
in this recipe, we will enable it.

In older versions of MariaDB, the main optimization for the IN subqueries was to turn them
into an EXISTS subquery. This optimization, in_to_exists, is still present in MariaDB and
is used where and when it is the best available choice; however, other better optimizations are
now available for most IN subqueries.

In fact, MariaDB is so good at optimizing the IN subqueries that it made sense to create an
optimization that was the reverse of the in_to_exists optimization. Naturally, it is called
exists_to_in. This optimization does exactly what the name implies. It turns an EXISTS
subquery into an IN subquery. MariaDB then takes the new query and uses its powerful set
of optimizations to execute it in the optimal way.

There's more...
We can temporarily turn off MariaDB's subquery optimizations (only really recommended for
benchmarking or other testing purposes) by running the following command:

SET optimizer_switch='semijoin=off';

To make the change permanent (again, this is not recommended), we can add the following
code to the end of our my.cnf or my.ini file (or add it to an existing [mysqld] section):

[mysqld]
optimizer_switch = 'semijoin=off'

See also
ff The Subquery Optimizations section of the MariaDB Knowledgebase contains

several articles on the various optimizations available in MariaDB to improve the
performance of subqueries. These articles can be found at https://mariadb.
com/kb/en/subquery-optimizations/

ff The full documentation of semijoin subquery optimizations in MariaDB is available at
https://mariadb.com/kb/en/semi-join-subquery-optimizations/

ff The full documentation of the exists_to_in subquery optimization strategy is
found at https://mariadb.com/kb/en/exists-to-in-optimization/

Chapter 3

59

Creating an index
An index helps MariaDB (or any database, really) to quickly locate often looked-for data that it
will otherwise have to search for by reading through our tables row by row. Creating indexes of
often-queried columns in large tables is a basic, but very useful optimization.

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe in Chapter 2, Diving Deep into MariaDB.

How to do it...
1.	 Launch the mysql command-line client application and connect to the isfdb

database on our MariaDB server.

2.	 Create an index on the email_address column of the emails table:
CREATE INDEX email ON emails(email_address(50));

3.	 Show the indexes on the emails table with the following command:
SHOW INDEX FROM emails\G

4.	 The output will look similar to the following screenshot:

Optimizing and Tuning MariaDB

60

How it works...
The emails table already has an index, the primary key. This is the most common type of
index, but if we rarely search in a large table for a record matching a primary key, it does not
do us much good. It is better to create indexes for the columns we are actually searching on.

An index on the email_address table contains a presorted list of the e-mail addresses,
which makes looking them up much faster.

There's more...
If we are dealing with columns that are guaranteed to be unique, such as a primary key,
we can create a unique index with the following command:

CREATE UNIQUE INDEX index_name ON table_name(column_name (length));

However, we can't do this for actual primary key columns; just columns that are unique. To
create a primary key index, we must use an ALTER TABLE command. As an example, we'll
create a new table that just contains author names copied from the authors table, and then
add a primary key to it using the following commands:

CREATE TABLE authors2 (author mediumtext);

INSERT authors2 SELECT author_canonical FROM authors;

ALTER TABLE authors2 ADD author_id int NOT NULL
 PRIMARY KEY auto_increment FIRST;

The ALTER TABLE statement takes care of creating the missing primary key IDs. We can view
a subsection of them with the following command:

SELECT * FROM authors2 WHERE author LIKE "%Bartholomew";

See also
ff More information on indexes is available at

https://mariadb.com/kb/en/optimization-and-indexes/

ff The full documentation of the CREATE INDEX command is available at
https://mariadb.com/kb/en/create-index/

ff The full documentation of the SHOW INDEX command is available at
https://mariadb.com/kb/en/show-index/

Creating a full-text index
A full-text index is a special type of index optimized to search through the text-based columns.
They can only be created for columns of the type CHAR, VARCHAR, and TEXT.

Chapter 3

61

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe from Chapter 2, Diving Deep into MariaDB.

How to do it...
1.	 Launch the mysql command-line client application and connect to the isfdb

database on our MariaDB server.

2.	 Create a FULLTEXT index on the note_note column of the notes table using the
following command:
CREATE FULLTEXT INDEX note ON notes(note_note);

3.	 When MariaDB has finished creating the index, we will get an output similar to
the following:
Query OK, 246719 rows affected (11.08 sec)

Records: 246719 Duplicates: 0 Warnings: 0

4.	 Show the indexes on the notes table with the following command:
SHOW INDEX FROM notes\G

5.	 The output of the SHOW command will look like the following screenshot:

Optimizing and Tuning MariaDB

62

How it works...
A FULLTEXT index enables us to search data using the MATCH() ... AGAINST syntax. The
MATCH part of the syntax contains a comma-separated list of the columns to be searched. The
AGAINST part of the syntax contains the string to search for and may also contain an optional
modifier to indicate the type of search to be performed. The search types are IN NATURAL
LANGUAGE MODE, IN BOOLEAN MODE, and WITH QUERY EXPANSION. The default type is
IN NATURAL LANGUAGE MODE and doesn't need to be explicitly specified. An example using
the index we just created is as follows:

SELECT * FROM notes

 WHERE MATCH(note_note)

 AGAINST('artificial','intelligence');

This query matches all the rows that either have the words artificial or intelligence
in them, not necessarily both. To ensure that both words appear in the note, we can search for
IN BOOLEAN MODE as follows:

SELECT * FROM notes

 WHERE MATCH(note_note)

 AGAINST('+artificial,+intelligence' IN BOOLEAN MODE);

There's more...
There are several limitations to the full-text indexes that we need to be aware of. Words that
are three characters in length (or less) or words longer than 84 characters are excluded from
the index. Partial words are also excluded. Lastly, if a word is a stopword, which is a list of
common words such as there, done, then, and always, or if the word appears in more than
half of the rows, it is excluded from the results unless we use IN BOOLEAN MODE.

See also
ff The full documentation of full-text indexes is available at

https://mariadb.com/kb/en/full-text-indexes/

ff The full documentation of the CREATE INDEX command is available at
https://mariadb.com/kb/en/create-index/

ff The full documentation of the SHOW INDEX command is available at
https://mariadb.com/kb/en/show-index/

ff The full list of stopwords is available at
https://mariadb.com/kb/en/stopwords/

Chapter 3

63

Removing an index
If an index is not used, the only thing it is doing is wasting space and slowing down our
INSERT and UPDATE statements. So if an index is not being used, we should remove it.

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe from Chapter 2, Diving Deep into MariaDB.

How to do it...
1.	 Launch the mysql command-line client application and connect to the isfdb

database on our MariaDB server.

2.	 Drop the full-text index on the note_note column of the notes table, which we
created in the previous recipe using the following command:
DROP INDEX note ON notes;

3.	 After the command's execution is complete, verify that the full-text index is removed
with the following command:
SHOW INDEX FROM notes;

How it works...
The DROP INDEX command actually creates and runs an ALTER TABLE statement to
remove an index. So when removing an index on a large table, we'll see the standard
ALTER TABLE progress messages.

There's more...
The last thing we want to do is to remove an index that we use regularly. To figure out what
indexes we are actually using, we need to enable user statistics. To do so, we need to add
the following code to the end of our main my.cnf or my.ini file (or add it to an existing
[mysqld] section) and then restart MariaDB:

[mysqld]
userstat = 1

Once it is enabled, we will need to let the server run for a while to gather statistics. Once we
feel that enough time has passed for the statistics to represent our typical usage, we can
show the index statistics with the following command:

SHOW INDEX_STATISTICS;

Optimizing and Tuning MariaDB

64

See also
ff More information on indexes can be found at

https://mariadb.com/kb/en/optimization-and-indexes/

ff The full documentation of the DROP INDEX command is available at
https://mariadb.com/kb/en/drop-index/

ff More information on user statistics can be found at
https://mariadb.com/kb/en/user-statistics/

Using JOINs
Joining data from two or more tables is how we unlock the power of a relational database
such as MariaDB. There are three basic JOIN types: INNER, CROSS, and LEFT (or OUTER).

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe from Chapter 2, Diving Deep into MariaDB.

How to do it...
1.	 Launch the mysql command-line client application and connect to the isfdb

database on our MariaDB server.

2.	 Perform an INNER JOIN of the authors and emails tables to show us a list of
authors and their corresponding e-mail addresses using the following command:
SELECT author_canonical, email_address

 FROM authors INNER JOIN emails

 ON authors.author_id = emails.author_id;

3.	 Perform a LEFT JOIN of the emails and authors tables to show us a list of
authors and their corresponding e-mail addresses using the following command:
SELECT author_canonical, email_address

 FROM emails LEFT JOIN authors

 ON authors.author_id = emails.author_id;

4.	 Perform a CROSS JOIN of awards and award types using the following command:
SELECT * FROM awards CROSS JOIN award_types LIMIT 10;

Chapter 3

65

How it works...
The results of an INNER JOIN are the rows that match in both the tables for the specified
join conditions. So, for example, all rows in the emails table that match the row in the
authors table based on the join conditions will be shown. But any results in the authors
table that don't exist will not be shown in the results.

The LEFT JOIN is similar to the INNER JOIN except that it produces results from all rows
from the table on the left, even if they don't match anything in the table on the right. The
emails table I'm using has 782 rows, so the result set of the LEFT JOIN example also has
782 rows. Columns from the emails table that do not match up with the columns from the
authors table are set to NULL for that row of the results.

A CROSS JOIN is the product of the two tables. Every row in each table is joined to every
other row in the other table. Think of it as multiplying the two tables together. For example, a
cross join of a table with 15 rows and a table with 10 rows is a table of 150 rows. This makes
this kind of JOIN potentially dangerous if we accidentally cross join two very large tables. In
our example, we add a LIMIT clause to cut it off after 10 rows of output.

There's more...
The utility of INNER JOIN and LEFT JOIN is easy to see. They let us combine the data from
multiple tables into a single result. The CROSS JOIN, on the other hand, may not seem to be
quite as useful at first glance. However, they do have an important, if limited, set of use. For
example, a CROSS JOIN can be used with a table of colors and a table of materials to give
us all possible material and color combinations. That said, it's best to be careful with them to
avoid unintended consequences.

See also
ff Refer to https://mariadb.com/kb/en/joins/ for full documentation of JOIN

in MariaDB

Using microseconds in the DATETIME
columns

There was a time when measuring dates and times accurately to within a single second were
as precise as we needed it to be. However, those days are gone. Users expect their apps to
have response times of well under a second, and so our databases must be able to track
those times as well.

Optimizing and Tuning MariaDB

66

How to do it...
1.	 Launch the mysql command-line client application and connect it to our

MariaDB server.

2.	 Create a test database if it doesn't already exist and switch to it using the
following command:
CREATE DATABASE IF NOT EXISTS test;

USE test;

3.	 Create a simple two-column table named times using the following command:
CREATE TABLE times (

 id int NOT NULL AUTO_INCREMENT,

 dt datetime(6),

 PRIMARY KEY (id)

);

4.	 Run the following INSERT statements at least four times and add some sample data
to our table using the following command:
INSERT INTO times (dt) VALUES (NOW()), (NOW(6));

5.	 Select all of the data from our table with the following SELECT command:
SELECT * FROM times;

On running the SELECT command, we get an output similar to the following screenshot:

Chapter 3

67

How it works...
When creating the times table, in order for our dt column to support datetime values with
microseconds, we need to specify the precision. If we don't, it will default to a precision of one
second. In this recipe, we set it to the highest precision, 6. If we try to use a higher value,
we will get an error.

When inserting data into our tables, we put in two rows at a time. First, a row with the
default precision of the NOW() function (1 second), and then with the highest precision (6).
When we use the default precision of NOW() the microseconds part of the datetime gets
entered as all zeroes. This is useful to keep in mind if we are migrating an application to use
microseconds, both the table itself and the functions we use to enter our datetime data
need to use microseconds.

There's more...
The CURRENT_TIMESTAMP function is a synonym for the NOW() function and the two can be
used interchangeably.

See also
ff Refer to https://mariadb.com/kb/en/microseconds-in-mariadb/ for more

information on using microseconds

ff The full documentation of the NOW() and CURRENT_TIMESTAMP() functions is at
https://mariadb.com/kb/en/now/ and https://mariadb.com/kb/en/
current_timestamp/

Updating DATETIME and TIMESTAMP
columns automatically

If our database has a DATETIME or TIMESTAMP column that we want to be updated
whenever the record is updated, there is no need for us to put that logic in our application.
MariaDB can take care of it for us.

How to do it...
1.	 Launch the mysql command-line client application and connect to our MariaDB server.

2.	 Create a test database if it doesn't already exist and switch to it using the
following command:
CREATE DATABASE IF NOT EXISTS test;

USE test;

Optimizing and Tuning MariaDB

68

3.	 Create a simple table named dtts using the following commands:
CREATE TABLE dtts (

 id int(11) NOT NULL AUTO_INCREMENT,

 name varchar(25),

 dt datetime(6) NOT NULL DEFAULT CURRENT_TIMESTAMP(6),

 ts timestamp(3) NOT NULL DEFAULT CURRENT_TIMESTAMP(3)

 ON UPDATE CURRENT_TIMESTAMP(3),

 PRIMARY KEY (id)

);

4.	 Insert some data into our new table using the INSERT command:
INSERT INTO dtts (name) VALUES

 ('Thomass'),('Gordon'),('Howard'),('Ezra');

5.	 Fix the misspelling of Thomas:
UPDATE dtts SET name = 'Thomas'

 WHERE name = 'Thomass';

6.	 View our table using the following command:
SELECT * FROM dtts;

7.	 The output will look similar to the following screenshot (but with today's date):

Chapter 3

69

How it works...
In this recipe, we created a table with four columns. An id column, a name column, a dt
column of the type datetime(6), and a ts column of the type timestamp(3).

The dt column has a type of datetime(6), which means it has full microsecond precision,
and it has a default value of CURRENT_TIMESTAMP(6). The ts column has a type of
timestamp(3), which gives it only millisecond precision, and it has the addition of ON
UPDATE CURRENT_TIMESTAMP(3), which automatically updates the stored time value
whenever the row is updated. With the update we made to the first row, we can see that the
code is working as the dt and ts columns are different.

There's more...
Both datetime and timestamp columns can have their DEFAULT and ON UPDATE values
set to the output of the CURRENT_TIMESTAMP function. We just need to take care to match
the precision to avoid needless warnings about truncated data (if we specify a higher
precision than the column is configured for) or avoid having data added with less precision
than we wanted (if we input values with a lower precision than the column is configured for).

It is also worth noting that the CURRENT_TIMESTAMP() function is a synonym for the
NOW() function.

See also
ff For more on DATETIME columns, refer to

https://mariadb.com/kb/en/datetime/

ff For more on TIMESTAMP columns, refer to
https://mariadb.com/kb/en/timestamp/

ff The full documentation of the NOW() and CURRENT_TIMESTAMP() functions is
available at https://mariadb.com/kb/en/now/ and https://mariadb.com/
kb/en/current_timestamp/

ff Notes related to the implementation of this feature in MariaDB are available at
https://mariadb.atlassian.net/browse/MDEV-452

4
The TokuDB

Storage Engine

In this chapter, we will cover the following recipes:

ff Installing TokuDB

ff Configuring TokuDB

ff Creating TokuDB tables

ff Migrating to TokuDB

ff Adding indexes to TokuDB tables

ff Modifying the compression of a TokuDB table

Introduction
TokuDB is a high-performance storage engine for MariaDB, optimized for write-intensive
workloads. It is highly scalable and uses a storage technology that the developer, Tokutek,
calls Fractal Tree Indexes. It can be used with no application or code changes instead of
(and alongside) MyISAM, Aria, and InnoDB/XtraDB tables. It is ACID and MVCC compliant.

ACID compliance means that TokuDB transactions have atomicity, consistency, isolation, and
durability. More information on ACID is available at http://en.wikipedia.org/wiki/ACID.

MVCC compliance means that TokuDB has multiversion concurrency control for database
transactions. More information on MVCC is available at http://en.wikipedia.org/
wiki/Multiversion_concurrency_control.

The TokuDB Storage Engine

72

Fractal trees are a modification of B-trees, which is what InnoDB uses to store data (to be
more accurate, InnoDB uses a balanced B+ tree). Whereas InnoDB has a single small cache
for an entire data tree, TokuDB implements several large caches at multiple levels in a tree.
It then buffers inserts, updates, deletes, and other operations until it has a large batch of
them that it can apply as a single operation, greatly reducing the number of input/output (I/O)
operations and thus increasing performance.

The video presentation at http://youtu.be/c-n2LGPpQEw is a good introduction to
Fractal Tree Indexes.

TokuDB is only supported on 64-bit Linux systems, so the recipes in this chapter will not work
on Windows or Mac OS X.

Installing TokuDB
Before we can start using TokuDB, we must first install it. TokuDB is included in MariaDB, but
it is not activated by default.

How to do it...
Follow the ensuing steps:

1.	 Launch the mysql command-line client application with a user that has the SUPER
privilege (like the Root user).

2.	 Run the following command:
INSTALL SONAME 'ha_tokudb.so';

3.	 Run the SHOW PLUGINS; command and verify that the TokuDB plugins are ACTIVE.
The output will be similar to the following screenshot (it has been edited to show just
the TokuDB entries):

Chapter 4

73

4.	 Run the SHOW ENGINES; command and verify that the TokuDB storage engine
is listed and enabled (the Support column). The output of the TokuDB line will be
similar to the following:

Engine Support Comment
TokuDB YES Tokutek TokuDB Storage Engine

How it works...
Like some of the other plugins and alternative storage engines that ship with MariaDB,
TokuDB is disabled by default. To enable it, we use the INSTALL SONAME command.
There are several parts to the TokuDB storage engine, which is why one command
appears to enable several plugins.

There's more...
Some additional steps we may want to perform when installing TokuDB are to make it the
default storage engine and to create a TokuDB-specific configuration file.

Making TokuDB the default storage engine
We can make TokuDB the default storage engine by running the following command:

SET GLOBAL default_storage_engine=TokuDB;

To make it permanent, we then add the following to the end of our system's my.cnf or
my.ini file (or to an existing [mysqld] section) and restart MariaDB:

[mysqld]

default-storage-engine=TokuDB

Creating a TokuDB-specific configuration file
On Linux systems, such as Fedora, Debian, CentOS, Ubuntu, and others, MariaDB comes
configured with support for modular configuration files. At the bottom of the default
configuration file is a line beginning with an exclamation mark (!). This command
includes all the files that end in .cnf in the directory named on the line.

Using multiple files for our configuration allows us to enable and disable features by just
moving files around. We can also make changes without having to edit an increasingly long
configuration file.

The directory will be located in one of two places. On Red Hat, CentOS, and Fedora,
the location is /etc/my.cnf.d/. On Debian, Ubuntu, and Linux Mint, the location is
/etc/mysql/conf.d/.

The TokuDB Storage Engine

74

When creating our own custom configuration file, it's best to give it a descriptive name.
Something like tokudb.cnf is perfect. The file needs a [mysqld] section at the very
least, but we could put other sections in the file if we needed or wanted to.

See also
ff The MariaDB knowledge base has a section devoted to TokuDB, which is available at

https://mariadb.com/kb/en/tokudb/

ff The TokuDB section of the Tokutek website also contains lots of good information and
is available at http://www.tokutek.com/products/tokudb-for-mysql/

Configuring TokuDB
Like other storage engines, TokuDB has many custom settings and options. Thankfully,
there are only a few that we really need to know about up front, and the default settings
are fairly optimized.

Getting ready
This recipe is going to assume a few things; firstly, that our server has 16 GB of RAM, and
secondly that we have two SSD drives, /dev/sdb1 and /dev/sdc1, mounted under the
/mnt/ directory.

How to do it...
Follow the ensuing steps:

1.	 Open the my.cnf file and add the following lines to an existing [mysqld] section:
TokuDB Cache should be set to at least half of available RAM
tokudb-cache-size = 9GB

TokuDB File Locations
tokudb-data-dir = /mnt/sdb1
tokudb-log-dir = /mnt/sdb1
tokudb-tmp-dir = /mnt/sdc1

2.	 Disable the write cache on our disks with the following:
hdparm -W0 /dev/sdb1
hdparm -W0 /dev/sdc2

3.	 Show the status of TokuDB with the following command:
SHOW ENGINE TokuDB STATUS;

Chapter 4

75

How it works...
There are many settings for TokuDB that we can tweak, enable, and disable; but for many
users, the defaults work well. One such default is that TokuDB will automatically set the
tokudb-cache-size option to be equal to half of our system RAM. In our recipe, we set
it manually to be a bit more than half, but we will need to test to see if it helps with our
databases and workloads. The TokuDB developers recommend that this setting should
never be set to lower than half.

Like with InnoDB, we can set the location of TokuDB's log, data, and temporary files to be
different from the configured default for other tables. In our example, we configure them to
live on our fast solid-state drives (SSDs). For simplicity, we configure the data and logs to go
to the same place. However, we set the temporary files to go to a completely different drive,
so that they don't impact the performance of our data drive. We could just set the MariaDB
default locations to these and TokuDB would write there by default, but sometimes it's better
for performance if we stick certain table types in one location and other table types in another.

Next, we turn off the write cache on our drives. The write cache is problematic because during
a power failure or other catastrophic event, we don't want any unwritten data to be in a drive's
onboard cache. When the operating system tells us it has written the data to disk, we want
it to have actually been written, not temporarily sitting in a cache somewhere. Many servers
have battery-backed RAID cards and other protections, but they are not 100 percent foolproof.

Incidentally, the SHOW ENGINE TokuDB STATUS; command is case insensitive. We can use
TokuDB, TOKUDB, tokudb, or any other case variant we can think of.

There's more...
There are many additional options for TokuDB that are not covered here. The TokuDB section of
the MariaDB knowledge base at https://mariadb.com/kb/en/tokudb/ contains links to
many useful resources for getting the most out of this powerful storage engine.

See also
ff In addition to the TokuDB section of the MariaDB knowledge base mentioned in

the previous section, another good resource for learning about the various TokuDB
configuration options is the Tokutek website at http://tokutek.com.

Creating TokuDB tables
Creating a TokuDB table is much like creating a MyISAM, Aria, or InnoDB/XtraDB table.
There are some more options and abilities we should know about.

The TokuDB Storage Engine

76

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe from Chapter 2, Diving Deep into MariaDB.

How to do it...
Follow the ensuing steps:

1.	 Launch the mysql command-line client and connect to the isfdb database.

2.	 Use the following CREATE statement to create our TokuDB table:
CREATE TABLE authors_tokudb (

 author_id int NOT NULL AUTO_INCREMENT,

 author_canonical mediumtext,

 author_lastname varchar(128),

 author_birthplace mediumtext,

 author_birthdate date DEFAULT NULL,

 author_deathdate date DEFAULT NULL,

 PRIMARY KEY (author_id),

 KEY (author_lastname),

 KEY (author_birthdate),

 KEY (author_deathdate)

) ENGINE=TokuDB;

3.	 Import some data from the authors table into our new table:
INSERT authors_tokudb

 SELECT

 author_id, author_canonical,

 author_lastname, author_birthplace,

 author_birthdate, author_deathdate

 FROM authors;

4.	 Verify that the indexes are working with the following command:
SHOW INDEXES FROM authors_tokudb;

5.	 The output of the preceding steps will have four rows with information on each of the
indexes we created.

6.	 Optimize the table with the following command:
OPTIMIZE TABLE authors_tokudb;

Chapter 4

77

7.	 The output of the OPTIMIZE command will be similar to the following screenshot:

How it works...
At first glance, the CREATE TABLE statement in this recipe looks similar to other CREATE
TABLE statements we have seen earlier, but there are a few differences. The obvious one is
that we specify ENGINE=TokuDB after the data definition. This is necessary if we have not set
TokuDB to be the default storage engine.

Next, in the data definition, we have defined three KEY indexes in addition to our PRIMARY
KEY index.

After creating our table, we populate it using the data selected from the isfdb.authors
table. Then, we take a look at our indexes to make sure they are there and then we optimize
our new table. The optimization step basically applies pending additions and deletions to our
indexes. The optimization step is not needed for performance reasons in TokuDB like it is with
other storage engines.

See also
ff The Adding indexes to TokuDB tables recipe for more information on indexes

in TokuDB

ff The Modifying the compression of a TokuDB table recipe for more information on
TokuDB's ROW_FORMAT compression settings

Migrating to TokuDB
TokuDB doesn't do us any good if we don't use it. Migrating existing tables to TokuDB, whether
they are MyISAM, Aria, or InnoDB/XtraDB, is fairly painless.

The TokuDB Storage Engine

78

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe in Chapter 2, Diving Deep into MariaDB.

How to do it...
Follow the ensuing steps:

1.	 Launch the mysql command-line client and connect to the isfdb database.

2.	 Alter the pub% tables to be TokuDB tables:
ALTER TABLE pub_authors ENGINE=TokuDB;

ALTER TABLE pub_content ENGINE=TokuDB;

ALTER TABLE pub_series ENGINE=TokuDB;

ALTER TABLE publishers ENGINE=TokuDB;

3.	 Run SHOW CREATE TABLE on each of the tables to verify that they now have
ENGINE=TokuDB after the data definition section. Using the publishers table
as an example, we get the following output:

4.	 Convert additional tables in the isfdb database to TokuDB format if required.

Chapter 4

79

How it works...
The ALTER TABLE statement works in three stages. It first creates a new table using the
new table definition. It then copies data from the old table to the new table. The last step
is to rename the new table to the same name as the old table.

There's more...
The ALTER TABLE method of migrating to TokuDB is probably the best way, but there are
others. For example, if we have a backup made with mysqldump, we could do a search
and replace on the schema definitions in our backup file and change the CREATE TABLE
statements to create TokuDB tables instead of what they were configured to create. Then,
when we import the file, the restored tables will be TokuDB tables.

Another method is to create a table based on an existing table, alter it, and then backup the
existing table and import the backup into the new table, as follows:

CREATE TABLE notes_tokudb LIKE notes;

ALTER TABLE notes_tokudb ENGINE=TokuDB;

SELECT * FROM notes INTO OUTFILE '/tmp/notes.tmp';

LOAD DATA INFILE '/tmp/notes.tmp' INTO TABLE notes_tokudb;

That said, for most cases, if not all, the ALTER TABLE method is preferred.

See also
ff The How to quickly insert data into MariaDB page of the MariaDB knowledge base

goes into more detail about large data import operations, and the instructions can
be adapted for TokuDB easily. This is available at https://mariadb.com/kb/en/
how-to-quickly-insert-data-into-mariadb/.

Adding indexes to TokuDB tables
TokuDB has advanced indexing capabilities compared to other storage engines, but we can't
use them if we don't add them to our tables.

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe in Chapter 2, Diving Deep into MariaDB.

The TokuDB Storage Engine

80

How to do it...
Follow the ensuing steps:

1.	 Launch the mysql command-line client and connect to the isfdb database.

2.	 View the current indexes on the authors table with the following command:
SHOW INDEXES FROM authors;

3.	 Alter the authors table to use the TokuDB storage engine and change the
index on the author_canonical column to CLUSTERING, as shown in the
following commands:
ALTER TABLE authors

 DROP KEY canonical,

 ADD CLUSTERING KEY canonical (author_canonical(50)),

 ENGINE=TokuDB;

4.	 Create another index, this time on the author_birthdate column, as shown in the
following commands:
CREATE CLUSTERING INDEX birthdate

 ON authors (author_birthdate);

5.	 View the indexes again as we did in step 2.

How it works...
Clustered indexes include all the columns of a table and can be used as covering indexes.
They also have performance advantages compared to other indexes because of the way
TokuDB works. We can define clustered indexes in some other storage engines, but only one
of them. TokuDB lets us define multiple clustered indexes. Being able to define more than one
gives TokuDB tables a great performance boost over a wide range of queries.

In our recipe, we defined clustered indexes in two ways, first using an ALTER TABLE
statement to replace an existing index with a clustered index, and then to add a new
index using the CREATE INDEX statement.

There's more...
Some of the other advantages of TokuDB's indexing capabilities include being able to
use an auto_increment column in any index and within any position in that index.
Also, TokuDB indexes can have up to 32 columns.

Chapter 4

81

See also
ff More information on TokuDB's clustering indexes is available at http://tokutek.

com/2009/05/introducing_multiple_clustering_indexes/.

Modifying the compression of a TokuDB table
TokuDB has several compression options to help us strike the perfect balance between disk
space and performance.

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe in Chapter 2, Diving Deep into MariaDB.

How to do it...
Follow the ensuing steps:

1.	 Launch the mysql command-line client and connect to the isfdb database.

2.	 Alter the titles table to use default compression, as shown in the
following command:
ALTER TABLE titles ENGINE=TokuDB

 ROW_FORMAT=default ;

3.	 Alter the pub_content table to use high compression, as shown in the
following command:
ALTER TABLE pub_content ENGINE=TokuDB

 ROW_FORMAT=tokudb_small;

4.	 Alter the canonical_author table to have fast compression, as shown in the
following command:
ALTER TABLE canonical_author ENGINE=TokuDB

 ROW_FORMAT=tokudb_fast;

5.	 Alter the notes table to use the lzma compressor, as shown in the
following command:
ALTER TABLE notes ENGINE=TokuDB

 ROW_FORMAT=tokudb_lzma;

The TokuDB Storage Engine

82

6.	 Alter the pubs table to not use any compression, as shown in the following command:
ALTER TABLE pubs ENGINE=TokuDB

 ROW_FORMAT=tokudb_uncompressed;

7.	 Optimize all the tables we just altered, as shown in the following command:
OPTIMIZE TABLE

 titles, pub_content, canonical_author, notes, pubs;

How it works...
Apart from being able to switch the compression of tables to whatever works best in our
situation, a big advantage of TokuDB compared to other storage engines is its ability to highly
compress data and still have great performance. The amount and type of compression we
use is controlled by the ROW_FORMAT option. If we do not specify row format when creating a
table, it will default to the default row format.

The official recommendation from Tokutek, the developers of TokuDB, is to use standard
compression (default) on machines with six or fewer cores and high compression
(tokudb_small) only on machines with more than six cores.

There's more...
The tokudb_fast and tokudb_small compression options are actually just aliases to
tokudb_quicklz and tokudb_lzma, respectively. They may be changed in the future
if other compression options are added to TokuDB. Likewise, the default compression is
currently also tokudb_quicklz.

There are two other compression options: the deprecated tokudb_zlib compression
option, which is what TokuDB used as its default until tokudb_quicklz debuted in
TokuDB Version 5.2, and tokudb_uncompressed, which disables compression
(useful for uncompressable data).

5
The CONNECT

Storage Engine

In this chapter, we will cover the following recipes:

ff Installing the CONNECT storage engine

ff Creating and dropping CONNECT tables

ff Reading and writing CSV data using CONNECT

ff Reading and writing XML data using CONNECT

ff Accessing MariaDB tables using CONNECT

ff Using the XCOL table type

ff Using the PIVOT table type

ff Using the OCCUR table type

ff Using the WMI table type

ff Using the MAC address table type

Introduction
In this chapter, we will explore some of the features of the CONNECT storage engine. This
storage engine allows us to access data in various file formats such as XML, CSV, and other
types of files stored on our host system. Its purpose is to connect MariaDB to these various
data types. It's a very handy tool for bringing various pieces of an infrastructure together. So,
the CONNECT storage engine tables are not exactly tables in the traditional sense (they may
not even physically exist). With that in mind, there are some things we need to realize when
working with this storage engine.

The CONNECT Storage Engine

84

First, DROP TABLE does not delete content the way MyISAM, InnoDB, and other tables do.
CONNECT tables are definitions of where the data we want to access is and what format it is
in. For example, an XML file stored in a user's home directory. When we drop a CONNECT table
using DROP, we are dropping the where-and-what definition stored in the CONNECT table and
not the data itself.

Secondly, indexing behaves differently for CONNECT tables. Most (but not all) of the CONNECT
data types that connect to files support indexing but only as long as there are no NULL values.
Virtual CONNECT tables, which connect to a source of information such as another database,
the filesystem, or the operating system, cannot be indexed because data from these sources
is unknown until we access it.

More about indexing CONNECT tables can be found at https://mariadb.com/kb/en/
using-connect-indexing/ and the full documentation of the CONNECT storage engine
can be found at https://mariadb.com/kb/en/connect/.

Installing the CONNECT storage engine
The CONNECT storage engine is not installed by default. So, the first thing that we have to do
is to install and enable it.

How to do it...
1.	 On Fedora, CentOS, or Red Hat systems, we can run the following command line:

sudo yum install MariaDB-connect-engine

On Debian, Ubuntu, or Linux Mint systems, we can run the following command line:
sudo apt-get install mariadb-connect-engine-10.0

2.	 On all systems, launch the mysql command-line client and connect it to our MariaDB
server with a user that has the SUPER privilege.

3.	 Enable the CONNECT storage engine by running the following command line:
INSTALL SONAME 'ha_connect';

4.	 Verify the installation by running the following two commands and look for CONNECT
in the output:
SHOW ENGINES;

SHOW PLUGINS;

Chapter 5

85

How it works...
On Windows and MacOS, the CONNECT storage engine is included but not active.
On Linux, we need to install the CONNECT package before we can enable it using the
mysql command-line client.

See also
ff The full documentation of the CONNECT storage engine can be found at

https://mariadb.com/kb/en/connect/

Creating and dropping CONNECT tables
CONNECT tables are only superficially similar to other tables. In this recipe, we'll create a
CONNECT DIR table.

Getting ready
Enable the CONNECT engine as specified in the Installing the CONNECT storage engine recipe
at the beginning of this chapter.

How to do it...
1.	 Connect to MariaDB with the mysql command-line client and to the test

database with a user that has the CREATE privilege. If the test database
is absent, create one.

2.	 Run the following CREATE statement to create a table that lists the files in the data
directory of the test database:
CREATE TABLE test_data (

 path varchar(256) NOT NULL flag=1,

 filename varchar(256) NOT NULL flag=2,

 filesize double(12,0) NOT NULL flag=5

) ENGINE=CONNECT DEFAULT CHARSET=latin1

 TABLE_TYPE=DIR FILE_NAME='*.frm'

 OPTION_LIST='subdir=1';

The CONNECT Storage Engine

86

Select everything in the table. The output will vary depending on the tables in the
test database and their location and size. Though the columns will be similar to the
following screenshot, the contents will not match:

Use the SUM() and COUNT() functions to summarize the output, as shown in the
following code. As with step 3, the columns in your output will match but the results
will not:
SELECT path, COUNT(*), SUM(filesize)

 FROM test_data GROUP BY path;

3.	 The output will be similar to the following screenshot:

4.	 Drop the test_data table using the following statement:
DROP TABLE test_data;

Chapter 5

87

How it works...
When we define a table using ENGINE=CONNECT, we are assigning the CONNECT storage
engine to look at the data that is stored somewhere outside our MariaDB database. This data
could be in a file, in another database, or as in this recipe, in the filesystem itself. The whole
purpose of this storage engine is to, for lack of a better term, connect us to different sources
of data.

As it connects to so many different forms of data, the CONNECT engine adds over two dozen
table options and five column options to the standard CREATE TABLE syntax. These options
enable us to correctly describe the data we want MariaDB to connect to.

The most important of these is the TABLE_TYPE option. We use this to inform CONNECT
about the several supported table types that we are creating. These include CSV, XML, INI,
ODBC, MYSQL, DIR, and others. For this recipe, we used the DIR type, which is one of the
simpler ones to define in a CREATE TABLE statement.

The FILE_NAME option is the other one we will use on all CONNECT tables. It defines the
file that we will be reading and writing data to. In this recipe, it simply defines a *.frm
wildcard pattern to list every file in the directory housing our test database that ends
with that extension.

Another important table option is OPTION_LIST. CONNECT provides over two dozen options
but they aren't enough for some of the supported data types that CONNECT can connect to.
The OPTION_LIST option is a catchall for all supplemental options. The documentation for
each table type lists these supplemental options and what they do. For our recipe, we set
the supplemental option subdir=1. It means that we want our directory listing to recursively
descend up to one directory below our default directory.

When CONNECT accesses a directory to gather data for us for the DIR table type, it collects
the predefined pieces of information, such as path, file name, and file size. It flags each type
of data with a number. Our column definition maps these flags to our columns. The following
is a table of the flag numbers for the DIR table type and the information they contain:

Flag Number Information
1 Path
2 File name
3 File type
4 File attributes
5 File size
6 Last write-access date
7 Last read-access date
8 File creation date

The CONNECT Storage Engine

88

Keep in mind that flags for other table types are not the same because they are dealing with
different types of data. When defining a new CONNECT table, we should always consult the
CONNECT documentation for the list of flags.

There's more...
The CREATE TABLE statements for CONNECT tables can be tricky to define properly. A table
definition may be accepted by the server, but it may not do anything or connect to our file the
wrong way.

OPTION_LIST options
The OPTION_LIST option is specified in the following pattern:

OPTION_LIST='option1=optvalue1,option2=optvalue2,...'

No spaces or other blanks are allowed between the equal signs or commas; it must be one
long space-free string.

Another thing to note is that option values cannot contain commas, but they can contain
equal signs. For example, the following is valid for connecting to an HTML table in an
XML document:

OPTION_LIST='name=table,coltype=HTML,attribute=border=3;cellspacing=2;cel
lpadding=5,headattr=title=mytable;bgcolor=gray'

It can be a little tricky to parse, but we just need to remember that semicolons (;) are fine to
separate parts of complex options in an option list. However, commas (,) can only be used as
option separators.

Dropping CONNECT tables
The standard DROP statement is used to remove a CONNECT table from our database, but
unlike what happens with a normal table, the corresponding data and index files are not
removed. To really remove a dropped CONNECT table, we need to first drop it and then
navigate to wherever the data is (as defined by the FILE_NAME option) and remove the data
file or files. In this recipe, this isn't necessary because we're actually connecting to the output
of a directory listing from our filesystem and not to an actual file. However, it is something to
remember when we connect to actual files in other recipes in this chapter.

Files and CONNECT
When we define a connection to an actual file, say with the XML table type, the file we specify
with the FILE_NAME option does not need to actually exist. If it does, great; however, if it
doesn't, CONNECT will not create it until we actually INSERT some data into the table.

Chapter 5

89

When CONNECT does create a file, it will either use the value we defined in the FILE_NAME
option or use the TABLENAME.TABLETYPE pattern for the name, for example, myfile.xml
for a table of the XML type and a name of myfile.

See also
ff The full documentation of how to CREATE and DROP CONNECT tables, including

tables of all the various options can be found at https://mariadb.com/kb/en/
creating-and-dropping-connect-tables/

ff DIR and other Special Virtual Tables are documented at https://mariadb.com/
kb/en/connect-table-types-special-virtual-tables/

Reading and writing CSV data using
CONNECT

CSV (comma separated values) is a very common data-interchange format. MariaDB can
easily import CSV formatted files using the LOAD DATA INFILE command, and there is a
CSV storage engine that stores data in the CSV format. However, neither of these handles
cases where we need to be capable of querying CSV files that are updated outside of MariaDB
and CSV files that we don't have to import before we can query them. The CONNECT storage
engine's CSV data type allows us to do this easily.

Getting ready
We need to have some CSV data to work with for this recipe. We'll use data from the ISFDB
database for this. To start with, perform the following steps:

1.	 Import the ISFDB database as described in the Importing the data exported by
mysqldump recipe from Chapter 2, Diving Deep into MariaDB.

2.	 Install and enable the CONNECT storage engine as described in the Installing the
CONNECT storage engine recipe at the beginning of this chapter.

3.	 Launch the mysql command-line client application and connect to the isfdb
database on our MariaDB server. Then create a /tmp/authors.csv file with
the following statement:
SELECT author_id, author_canonical, author_legalname,

 author_birthplace, author_birthdate, author_deathdate

 INTO OUTFILE '/tmp/authors.csv'

 FIELDS TERMINATED BY ',' ENCLOSED BY '"'

FROM authors ORDER BY author_id LIMIT 100;

The CONNECT Storage Engine

90

How to do it...
1.	 Launch the mysql command-line client application and connect to the isfdb

database on our MariaDB server.

2.	 Create a table named authors_csv, which uses the CONNECT storage engine's CSV
data type and is connected to the authors_csv.CSV file we created in preparation
for this recipe (change the FILE_NAME value to wherever the file is actually located):
CREATE TABLE authors_csv (

 author_id int(11) NOT NULL,

 author_canonical varchar(1024) NOT NULL,

 author_legalname varchar(1024) NOT NULL,

 author_birthplace varchar(1024) NOT NULL,

 author_birthdate varchar(10),

 author_deathdate varchar(10)

) ENGINE=CONNECT TABLE_TYPE='CSV'

FILE_NAME='/tmp/authors.csv'

SEP_CHAR=',' QCHAR='"' QUOTED=1;

3.	 Run the following SELECT statement to verify that we are reading from the CSV file:
SELECT * FROM authors_csv;

4.	 Run the following INSERT statement to add a couple of rows to the CSV file:
INSERT authors_csv VALUES (

 101,"Fake Author",

 "Author, Fake",

 "Charlotte, North Carolina, USA",

 "1970-01-01",""), (

 102,"Really Fake Author",

 "Author, Really Fake",

 "St. Paul, Minnesota, USA",

 "1969-12-31","");

5.	 Open the CSV file in a text editor and add the following row to the bottom of the file,
then save and close the file:
103,"Fake","Fake","Fake, USA","1970-04-01",

Chapter 5

91

6.	 Run the SELECT statement from step 3 and verify the three rows we added with
author_id numbers greater than 100 in the output, which is shown in the
following screenshot:

How it works...
When we create a table that uses the CONNECT storage engine's CSV data type, we're not
actually creating a table in the traditional sense. Instead, we are telling CONNECT how to read
the file. Most of the statement we use to create the table is the standard CREATE TABLE
syntax, but there are several bits at the end that are specific to the CONNECT storage engine
and the CSV data type; the primary ones being TABLE_TYPE and the FILE_NAME parts.

The other three are more specific to the CSV table type. SEP_CHAR defines the separator
character, a comma (,), in our recipe, and QCHAR defines the character used to quote
values, double quotes (") for this CSV file.

The QUOTED option is special. This option sets how CONNECT should handle quoting.
There are four settings that it recognizes. They are as follows:

ff A setting of 0 means fields will only be quoted if they contain the separator character
or if they begin with the quoting character (in which case the quoting character will
be doubled)

ff A setting of 1 means all text fields will be quoted unless they are NULL (numeric fields
will not be quoted)

ff A setting of 2 means all fields will be quoted unless they are NULL

ff A setting of 3 means all fields will be quoted, including NULL fields

Inserting using the mysql command-line client works like we would expect, and the new
rows are added to the bottom of the file. We can also make insertions outside of MariaDB
by editing the CSV file directly.

The CONNECT Storage Engine

92

There's more...
There are a few more things to be aware of when working with CSV files using the CONNECT
storage engine.

CSV header lines
Some CSV files have a header line that contains the names of the columns. We can instruct
CONNECT to ignore this line with a HEADER=1 option when defining the table. A common
place to define this is after the FILE_NAME option.

Changing the number and order of columns read using flags
For some CSV files, if we plan on just reading the data, we may only care about a subset of
the columns in the file, or we may want them to be read in a different order. For both of these
situations, we use the FLAG option as part of the column definition when creating the table.
For example, the following code is a modified version that only contains a reordered subset of
the information in our example CSV file:

CREATE TABLE authors_csv2 (

 author_id int(11) NOT NULL,

 author_birthdate varchar(10) NOT NULL FLAG=5,

 author_birthplace varchar(1024) NOT NULL FLAG=4,

 author_canonical varchar(1024) NOT NULL FLAG=2

) ENGINE=CONNECT DEFAULT CHARSET=utf8

TABLE_TYPE='CSV'

FILE_NAME='/tmp/authors_csv.CSV'

SEP_CHAR=',' QCHAR='"' QUOTED=1;

We will run into trouble if we write to this table, so if we do decide to do this, we should
treat the table as read-only and possibly set READONLY=1 when defining the table so that
CONNECT will not even attempt to perform an INSERT query.

See also
ff The full documentation on connecting to CSV data files can be found at

https://mariadb.com/kb/en/connect-table-types-data-files/

ff More information on data types in the CONNECT storage engine can be found at
https://mariadb.com/kb/en/connect-data-types/

Chapter 5

93

Reading and writing XML data using
CONNECT

There is a lot of data stored in XML format. MariaDB can easily export data as XML,
but before the CONNECT engine, it did not have a way to easily read from and write to
external XML documents.

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe from Chapter 2, Diving Deep into MariaDB. Then, install and enable the CONNECT
storage engine as described in the Installing the CONNECT storage engine recipe at the
beginning of this chapter. Then, export the isfdb-001.xml file as described in the
Producing XML output recipe from Chapter 2, Diving Deep into MariaDB. For this recipe, it is
assumed that the XML file is located in /tmp/isfdb-001.xml, but it will be wherever we
were when we exported it from MariaDB. We'll need to alter the FILE_NAME option in the
recipe to point at it.

How to do it...
1.	 Launch the mysql command-line client application and connect to the isfdb

database on our MariaDB server.

2.	 Run the following CREATE TABLE statement:
CREATE TABLE authors_xml (

 author_id int,

 author_canonical varchar(1024),

 author_legalname varchar(1024),

 author_birthplace varchar(1024),

 author_birthdate char(10),

 author_deathdate char(10),

 note_id int,

 author_wikipedia varchar(1024),

 author_views int,

 author_imdb varchar(1024),

 author_marque int,

 author_image varchar(1024),

 author_annualviews int,

 author_lastname varchar(1024),

The CONNECT Storage Engine

94

 author_language int

) ENGINE=CONNECT TABLE_TYPE=XML FILE_NAME='/tmp/isfdb-001.xml'

 TABNAME='resultset'

 OPTION_LIST='rownode=row,colnode=field,coltype=HTML'

;

3.	 Run the following SELECT statement to get a list of authors born in the United
Kingdom (may be empty):
SELECT

 author_id, author_canonical

FROM authors_xml

WHERE author_birthplace LIKE '%UK';

4.	 Run the following INSERT statement to add a row to our XML file:
INSERT authors_xml VALUES (

 101,"Terry Pratchett","Pratchett, Terry",

 "Beaconsfield, Buckinghamshire, UK",

 "0000-00-00","0000-00-00",101,

 "",101,"",101,"",101,"Terry",101);

5.	 Run the SELECT statement from step 3 to see that the row was added.

How it works...
For this recipe, we're using the XML output produced by MariaDB. The file has the
following format:

<resultset>
 <row>
 <field name="first_column"></field>
 <field name="second_column"></field>
 ...
 <field name="last_column"></field>
 </row>
</resultset>

This style of XML is actually quite similar to an HTML table, except with different tag names
(resultset instead of table, row instead of tr, and field instead of td).

Defining the columns for this table so that we can read the XML data is similar to the
process of creating columns in a regular MyISAM or InnoDB table. However, after the
ENGINE=CONNECT part, we add options to tell the CONNECT storage engine how to
read the file.

Chapter 5

95

The data we are interested in is between the <resultset> tags, so we specify
TABNAME='resultset'. We then inform CONNECT about the data using the OPTION_LIST
option. In this option, we first specify coltype=HTML, which means that the column tags
are all going to be named the same, so we should read them by their position and not by
their names. Next, we give the names of the tags that specify the rows and the columns,
rownode=row and colnode=field respectively.

Once the table is defined, we can query it much like a regular table. We can also insert data
with some things to be aware of as described in the next section.

There's more...
XML data can be tricky to work with mainly because it is such a flexible data storage format.
The CONNECT storage engine tries to accommodate as much variation as it can, but there
will always be some XML files that it simply cannot read from or write to properly.

Inserting XML data
In this recipe, we inserted some data. From within MariaDB, it appeared that the data was
inserted properly; however, if we view the XML file, it's plain to see that CONNECT did not put it
in the way the other entries were inserted. For this reason, it's often best to stick to inserting
into simple XML documents or just treating them as read-only data.

Tree versus HTML-like data structures
Some XML data is like the data in our recipe; it is similar in structure to an HTML table.
Other XML data is more like a tree. For example, our data may have had the following format:

<resultset>
 <row>
 <first_column></first_column>
 <second_column></second_column>
 ...
 <last_column></last_column>
 </row>
</resultset>

If our data had been defined as shown in the preceding code lines, we would have defined our
table as follows:

CREATE TABLE table_name (

 first_column data_definition,

 second_column data_definition,

 ...,

 last_column data_definition)

The CONNECT Storage Engine

96

 ENGINE=CONNECT TABLE_TYPE=XML TABNAME='resultset'

 FILE_NAME='/tmp/isfdb-001.xml'

 OPTION_LIST'rownode=row';

This simplified definition is possible because CONNECT is smart enough to figure out that, as
we didn't say otherwise, the tags in between the <row> and </row> tags must be the names
of the columns.

Tags and tag attributes
For some XML files, we may want to query and update both tag names and attributes within
tags. For this, the CONNECT storage engine provides us with the FIELD_FORMAT option.

Suppose our XML data had the following format:

<resultset attribute1="value" attribute2="value">
 <row>
 <first_col>
 <sub1></sub1>
 <sub2></sub2>
 </first_col>
 <second_col attribute="value" />
 <last_col>
 <sub1></sub1>
 <sub2></sub2>
 </last_col>
 </row>
</resultset>

We could create our table as follows:

CREATE TABLE table_name (
 attribute1 data_def FIELD_FORMAT='@attribute1',
 attribute2 data_def FIELD_FORMAT='@attribute2',
 subitem1 data_def FIELD_FORMAT='first_col/sub1',
 subitem2 data_def FIELD_FORMAT='first_col/sub2',
 attribute data_def FIELD_FORMAT='second_col/@attribute',
 last_col data_def FIELD_FORMAT='last_col'
) ENGINE=CONNECT TABLE_TYPE=XML TABNAME='resultset'
 FILE_NAME='/tmp/isfdb-001.xml'

The FIELD_FORMAT option allows us to specify which tag we want to read from and which
attribute inside a tag uses the @ sign. We don't need to specify the top-level tag; so, for those
attributes, we just name them.

Chapter 5

97

See also
ff The full documentation for the CONNECT storage engine's XML data type is at:

https://mariadb.com/kb/en/connect-table-types-data-files/

Accessing MariaDB tables using CONNECT
Using the CONNECT storage engine, we can set up connections to local or remote MariaDB
database tables and have them appear as if they are part of our MariaDB database.

Getting ready
Import the ISFDB database as described in the Importing the data exported by mysqldump
recipe from Chapter 2, Diving Deep into MariaDB. Then, install and enable the CONNECT
storage engine as described in the Installing the CONNECT storage engine recipe at the
beginning of this chapter.

 How to do it...
1.	 Launch the mysql command-line client application and connect to the isfdb

database on our MariaDB server.

2.	 Run the following CREATE TABLE statement by altering the user:pass part of
the CONNECTION option with a username and password that has rights to the
isfdb database:
CREATE TABLE websites_2 (

 site_id int(11),

 site_name varchar(255),

 site_url varchar(1024),

 PRIMARY KEY (site_id)

) ENGINE=CONNECT TABLE_TYPE=MYSQL

CONNECTION='mysql://user:pass@localhost/isfdb/websites';

3.	 Run the following two SELECT statements to test that our connection is working and
that the output is the same for both tables (we're using the LENGTH part to limit the
output to just the shorter URLs; feel free to omit it):
SELECT * FROM websites WHERE LENGTH(site_url)<40;

SELECT * FROM websites_2 WHERE LENGTH(site_url)<40;

The CONNECT Storage Engine

98

4.	 Add some data to the table using the following INSERT statement:
INSERT websites_2 VALUES

 ("","MariaDB.com","https://mariadb.com"),

 ("","MariaDB.org","https://mariadb.org");

5.	 Run the SELECT statements from step 3 again to verify whether the new entries have
appeared in both the tables.

How it works...
It may seem silly to set up a connection from our local isfdb database to our local isfdb
database, but it serves as a good demonstration of the ability of the CONNECT storage
engine to connect us to other MariaDB databases. This functionality is similar to that of
the FEDERATEDX storage engine which also ships with MariaDB.

The usefulness of this feature becomes obvious when we are able to connect to remote
database tables on other servers. They can be anywhere in the world, but we can connect and
interact with them as if they are local. We'll be limited by the speed of our network connection
between our local and remote MariaDB servers, but the utility and flexibility are hard to beat.

The key to configuring this data type is the CONNECTION option. It has the following format:

mysql://username:password@host/database_name/table_name

This format is basically a MariaDB URL. The host parameter can be any valid IP address,
domain name, or the localhost key word.

If we connect with a user that doesn't require a password, we can skip :password of the
username:password part of the URL.

The definitions of the original websites table and our new websites_2 table are slightly
different. This is because the CONNECT storage engine does not support certain data types
such as TINYTEXT or certain options such as AUTO INCREMENT. In practice, this mostly
works out fine; we just exclude the options that aren't supported and modify the data type
to be something close to what we need. Then, when we insert data, the original table's
configuration will take care of making sure only the correct data is inserted. For example, in
our recipe, the original table took care of inserting the correct auto-incremented values into
the site_id column when we inserted our two rows of data.

There's more...
It probably goes without saying that this feature needs to be used with great care. Any time we
open our database server to the Internet we're just asking for trouble. The best way to do this,
if we need to connect two servers together that aren't in the same building (or even the same
country), is to connect them via a VPN or another private, encrypted network connection.

Chapter 5

99

We also need to ensure that permissions on our server are locked down good and tight as any
user with the permission to issue a SHOW CREATE TABLE query can see the CONNECTION
parameter, password, and other details.

See also
ff The full documentation of the CONNECT Table Type is at https://mariadb.

com/kb/en/connect-table-types-mysql-table-type-accessing-
mysqlmariadb-tables/

Using the XCOL table type
In a perfect world, all data in a MariaDB database would be properly defined and normalized.
We don't live in such a world, and sometimes, we have to work with tables that contain one or
more catchall columns stuffed full of related values. The XCOL table type enables us to work
with this data as if it was stored in a separate rather than a single column.

How to do it...
1.	 Launch the mysql command-line client application and connect to the test

database on our MariaDB server. If the test database does not exist, create it first.

2.	 Run the following CREATE TABLE statement to create our example table:
CREATE TABLE superheroes (

 team varchar(50),

 heroes varchar(1024)

);

3.	 Add some data to our new table:
INSERT superheroes VALUES

 ("The Avengers","Thor, Iron Man, Black Widow, Hawkeye, Hulk,
Captain America"),

 ("The Justice League", "Superman, Batman, Aquaman, Flash, Wonder
Woman"),

 ("The X-Men", "Storm, Cyclops, Wolverine, Rogue, Iceman");

4.	 Create an XCOL table that references our superheroes table (change username
to a user that has read access rights to the superheroes table without needing
a password):
CREATE TABLE superheroes_xcol ENGINE=CONNECT

 TABLE_TYPE=XCOL TABNAME='superheroes'

 OPTION_LIST='user=username,colname=heroes';

The CONNECT Storage Engine

100

5.	 Run the following SELECT statements to test our XCOL table:
SELECT * FROM superheroes_xcol;

SELECT * FROM superheroes_xcol WHERE heroes LIKE "S%";

SELECT team, count(heroes) FROM superheroes_xcol GROUP BY team;

How it works...
An XCOL table is useful when we have a column in a table that is a list of values. The XCOL
table gives us a view into this data and lets us query it as if it was separate.

There's more...
There are a few particulars of the XCOL table type that can cause unexpected issues. One
is that an XCOL table is actually reconnecting to the server when it is being queried. If we're
connected with a user that requires a password, we need to either supply a password to the
option list when we create the table or supply the option list with a user that can read the
table without a password.

Another thing to be aware of is that proxy tables are strictly read only. This is not obvious
because the error message we get if we try to INSERT is a cryptic COLBLK SetBuffer:
undefined Access Method instead of something more understandable.

Finally, XCOL and proxy tables are inefficient and consume more resources when accessed
than a regular table. If we try to set up an XCOL table that connects to a large table, then
we will run into serious performance issues. If we have a need to deal with lots of
unstructured data, a better option is dynamic columns which are discussed in
Chapter 10, Exploring Dynamic and Virtual Columns in MariaDB.

See also
ff The full documentation of the XCOL data type can be found at

https://mariadb.com/kb/en/connect-table-types-xcol-table-type/

ff The full documentation of the Proxy table type can be found at
https://mariadb.com/kb/en/connect-table-types-proxy-table-type/

Using the PIVOT table type
The PIVOT table type is very useful to sort and sum the columns in a table. It's similar to
GROUP BY but with a more understandable layout. This sort of task is often used to sort
and sum columns of data in a desktop spreadsheet program.

Chapter 5

101

How to do it...
1.	 Launch the mysql command-line client application and connect to the test

database on our MariaDB server. If the test database does not exist, create it first.

2.	 Run the following CREATE TABLE statement to create an expenses table:
CREATE TABLE expenses (

 who varchar(64),

 day varchar(10),

 what varchar(64),

 amount varchar(10)

);

3.	 Add some data to the table by executing the following command lines:
INSERT expenses VALUES

 ("Daniel","2013-09-01","Clothing",42.50),

 ("Amy","2013-09-02","Food",5.22),

 ("Daniel","2013-09-01","Clothing",27.75),

 ("Daniel","2013-09-03","Food",10.27),

 ("Amy","2013-09-03","Gas",42.84),

 ("Amy","2013-09-01","Food",15.01),

 ("Amy","2013-09-01","Clothing",11.00),

 ("Daniel","2013-09-01","Gas",34.10),

 ("Amy","2013-09-02","Food",15.00),

 ("Daniel","2013-09-01","Food",12.50),

 ("Daniel","2013-09-02","Gas",32.20),

 ("Daniel","2013-09-03","Clothing",82.80),

 ("Amy","2013-09-03","Food",8.72),

 ("Daniel","2013-09-03","Gas",15.08),

 ("Daniel","2013-09-02","Clothing",17.27),

 ("Amy","2013-09-03","Clothing",32.00) ;

4.	 Create a PIVOT table (change username to a user that has read access rights to the
expenses table without needing a password):
CREATE TABLE expenses_pivot

 ENGINE=CONNECT TABLE_TYPE=PIVOT TABNAME=expenses

 OPTION_LIST='user=username';

The CONNECT Storage Engine

102

5.	 Run the following SELECT statement to show our pivoted data. The result is shown in
the following screenshot:
SELECT * FROM expenses_pivot;

How it works...
When our expenses table is pivoted, the default pivot places the contents of the what column
next to the who and day columns. We could get the same data with the following query, but
the output is not that well-organized and easy to read:

SELECT who, day, what, SUM(amount)

FROM expenses

GROUP BY who, day, what;

What the CONNECT storage engine is doing when it pivots a table is to first find a facts column;
in our sample table, this column is the prices column. It then determines the column to pivot
on; in our sample table, it automatically chose the what column. It then aggregates the facts
(the prices) by summing the prices together by day and what. It then gets the distinct values of
the what column (the pivot column) and creates a column for each value. It constructs all this
in memory, and after it has everything sorted, it outputs the table.

One potential issue with this table type is that the CONNECT engine reads in the values to
pivot on only when a PIVOT table is created. If those values change, we may get odd results
or an error, for example, if we delete all rows from the expenses table that match Gas or if
we insert a row where the what column is Electricity. The only remedy in this case is to
DROP and then recreate the PIVOT table.

Chapter 5

103

There's more...
CONNECT tries to guess the column we want to pivot on, but we can also specify the column
using pivotcol=column_name in the OPTION_LIST option. We can also change the
default function from SUM to something else, such as AVG, to compute the average amount
instead of the total amount spent on a day. For example, the following is a query creating a
table that pivots on the day column and computes the average:

CREATE TABLE expenses_pivot2

 ENGINE=CONNECT TABLE_TYPE=PIVOT TABNAME=expenses

 OPTION_LIST='user=daniel,pivotcol=day,function=AVG';

SELECT * FROM expenses_pivot2;

We can also drop columns from our pivot tables; for example, we are interested in the grand
totals for each day without regard to the who column. The following is an example that does this:

CREATE TABLE expenses_pivot3

 ENGINE=CONNECT TABLE_TYPE=PIVOT TABNAME=expenses

 OPTION_LIST='user=daniel';

ALTER TABLE expenses_pivot3 DROP COLUMN who;

SELECT * FROM expenses_pivot3;

See also
ff The full documentation of the PIVOT data type is at

https://mariadb.com/kb/en/connect-table-types-pivot-table-type/

Using the OCCUR table type
If a table contains many columns, all of which contain similar types of data, it can be difficult
to answer questions which deal with comparing those values. This is where the OCCUR data
type can prove useful.

How to do it...
1.	 Launch the mysql command-line client application and connect to the test

database on our MariaDB server. If the test database does not exist, create it first.

2.	 Run the following CREATE TABLE statement to create a gadgets table:
CREATE TABLE gadgets (

 who varchar(64),

 phone int,

The CONNECT Storage Engine

104

 tablet int,

 mp3player int,

 camera int

);

3.	 Add some data to our gadgets table using the following statement:
INSERT gadgets VALUES

 ("Jim",1,2,1,2),

 ("Bob",0,0,3,0),

 ("Tom",1,1,1,0),

 ("Joe",1,1,1,1),

 ("Rob",2,2,0,0),

 ("Tim",0,3,1,1)

;

4.	 Run the following statement to create our OCCUR table (replace username with a
user that has read access rights to the gadget table without needing a password):
CREATE TABLE gadgets_occur (

 who varchar(64) NOT NULL,

 gadget varchar(16) NOT NULL,

 number int NOT NULL

) ENGINE=CONNECT TABLE_TYPE=OCCUR TABNAME=gadgets

OPTION_LIST='user=username,occurcol=number,rankcol=gadget'

COLIST='phone,tablet,mp3player,camera';

5.	 Run the following SELECT statements to view our OCCUR table in action:
SELECT * FROM gadgets_occur;

SELECT * FROM gadgets_occur

 WHERE gadget="tablet" and number > 1;

How it works...
When we create an OCCUR table, we are basically viewing the data in the source table in a
different way. In our recipe, instead of columns with the number of gadgets each person
owns being listed with one row per user, we flip it such that the number of each gadget is
listed by itself.

Chapter 5

105

When defining an OCCUR table, we first specify the tables we want our values stored in. The
first column we defined, name, matches the same column in our source table. The other two
are the columns we're mapping data to, so their names do not match. For this recipe, we use
gadget and number since those names match the data being stored.

With our columns defined, we now need to tell the CONNECT storage engine how to map the
data. After defining which table our OCCUR column is connecting to with the TABNAME option,
the rest of the configuration happens in the OPTION_LIST and COLIST variables.

In the OPTION_LIST variable, we first define which column in our OCCUR table we want to
use to hold the numbers we're tracking using the occurcol variable; for our recipe, we're
using the number column. We then name the column using the rankcol variable that
will hold the column names we're interested in. Lastly, with the COLIST option, we name
those columns.

With the setup complete, we can easily ask questions that are much more difficult to ask our
original table. For example, we can get a list of every person who owns multiples of the given
gadget types using the following command line:

SELECT * FROM gadgets_occur

 WHERE number > 1;

We can approximate this query on the gadgets table only with difficulty. For example, the
following four queries give us the same data as the previous single query, but it is separated:

SELECT who,phone FROM gadgets WHERE phone > 1;

SELECT who,tablet FROM gadgets WHERE tablet > 1;

SELECT who,mp3player FROM gadgets WHERE mp3player > 1;

SELECT who,camera FROM gadgets WHERE camera > 1;

Going further, we can add UNION ALL in between the queries to combine all of the
numbers together, but while this gives us the numbers, it doesn't tell us what gadget
each number represents:

SELECT who,phone AS gadget FROM gadgets WHERE phone > 1 UNION ALL

SELECT who,tablet FROM gadgets WHERE tablet > 1 UNION ALL

SELECT who,mp3player FROM gadgets WHERE mp3player > 1 UNION ALL

SELECT who,camera FROM gadgets WHERE camera > 1;

A better solution is to use an OCCUR table.

The CONNECT Storage Engine

106

There's more...
In our example as some people did not own certain gadgets, the values in the original
table were set to zero. We omitted those by specifying NOT NULL for the columns in our
OCCUR table.

See also
ff The full documentation of the OCCUR data type can be found at

https://mariadb.com/kb/en/connect-table-types-occur-table-type/

Using the WMI table type
Windows includes an interface through which various components of the operating system
can provide useful system information. This interface is called Windows Management
Instrumentation (WMI). The WMI table type allows us to easily connect to and display
information from this interface.

Getting ready
As WMI is specific to the Windows operating system, this recipe uses Windows.

How to do it...
1.	 Launch the mysql command-line client application and connect to the test

database on our MariaDB server. If the test database does not exist, create it first.

2.	 Run the following CREATE TABLE statement to create a WMI table:
CREATE TABLE alias (

 friendlyname char(32) NOT NULL,

 target char(64) NOT NULL

) ENGINE=CONNECT TABLE_TYPE='WMI'

OPTION_LIST='Namespace=root\\cli,Class=Msft_CliAlias';

3.	 Run the following SELECT statement to query the table:
SELECT * FROM alias;

Chapter 5

107

How it works...
The WMI table type maps rows to each instance of the related information. To accomplish
this mapping, our column names must match the properties that we're interested in. This
matching is case insensitive.

Apart from naming, when configuring a WMI table, we need to tell the CONNECT storage
engine the Namespace and Class of the data that we are looking up. We define these
as variables in the OPTION_LIST. Our recipe is actually a handy way to get a list of
common classes.

There's more...
We don't always need to define tables when using the WMI data type as some namespaces
have default values in the class specification that CONNECT can look up when creating the
table. For example, we can create a table that queries the CSPROD class simply by naming
it csprod:

CREATE TABLE csprod

 ENGINE=CONNECT TABLE_TYPE='WMI';

Performance
Some WMI providers are slow to respond. There's not a whole lot that can be done about it as
it is due to the way WMI works. It is something to be aware of.

A related issue is that some WMI providers output a lot of information. So much so that
for some, it can bog down our system or cause a query to take far too long to complete. To
combat this, CONNECT has an Estimate option that has a default value of 100. This option
limits the output to 100 rows. For instances where we need to increase this, we can do so
when creating our WMI tables. For most providers, keeping it at 100 is preferred.

Other information
A couple of other bits of information that are useful to know about WMI tables are that they
cannot be indexed and that they are read-only.

See also
ff The full documentation of the WMI data type can be found at https://mariadb.

com/kb/en/connect-table-types-special-virtual-tables/

The CONNECT Storage Engine

108

Using the MAC address table type
The MAC table type allows us to look up and query various bits of information about the
network connection and network setup of our local machine.

Getting ready
The MAC table type works only in Windows. So, this recipe requires the Windows OS.

How to do it...
1.	 Launch the mysql command-line client application and connect to the test

database on our MariaDB server. If the test database does not exist, create it first.

2.	 Run the following CREATE TABLE statement to create a MAC table:
CREATE TABLE host (

 hostname varchar(132) flag=1,

 domain varchar(132) flag=2,

 ipaddr char(16) flag=15,

 gateway char(16) flag=17,

 dhcp char(16) flag=18,

 leaseexp datetime flag=23

) ENGINE=CONNECT TABLE_TYPE=MAC;

3.	 Run the following SELECT statement to query the information about our current
network settings:
SELECT * FROM host;

How it works...
Information on our network cards and their current settings is actually pretty easy to get,
so the MAC table type is more of a convenient feature compared to other CONNECT storage
engine table types. That said, it can be a very useful way to inform our applications about
their network connection as all of that data is now available right inside the database.

There are many network parameters that we can query, and the ones that we connect to in
our table definition are set using the flag= option when defining a MAC table.

Chapter 5

109

The following table lists all of the values, their flags, and their data definitions:

Flag Value Data type

1 Host Name varchar(132)

2 Domain varchar(132)

3 DNS address varchar(24)

4 Node type int(1)

5 Scope ID varchar(256)

6 Routing int(1)

7 Proxy int(1)

8 DNS int(1)

10 Name varchar(260)

11 Description varchar(132)

12 MAC address char(24)

13 Type int(3)

14 DHCP int(1)

15 IP address char(16)

16 SUBNET mask char(16)

17 GATEWAY char(16)

18 DHCP server char(16)

19 Have WINS int(1)

20 Primary WINS char(16)

21 Secondary WINS char(16)

22 Lease obtained datetime

23 Lease expires datetime

There's more...
Flag values of less than 10 are specific to the computer. Other flag values are specific to the
network card or cards in the computer (which may or may not be removable).

See also
ff The full documentation of the MAC table type is at: https://mariadb.com/kb/

en/connect-table-types-special-virtual-tables/

6
Replication in MariaDB

In this chapter, we will cover the following recipes:

ff Setting up replication

ff Using global transaction IDs

ff Using multisource replication

ff Enhancing the binlog with row event annotations

ff Configuring binlog event checksums

ff Selectively skipping the replication of binlog events

Introduction
Replication is what allows MariaDB to scale to thousands of servers, millions of users, and
petabytes of data. But let's not get ahead of ourselves. Replication on a small scale is a great
way to grow the number of users our application can support with minimal effort. As we gain
users, we can grow the number of replication servers to match.

There are many different ways to set up how we do replication. In this chapter, we'll only
touch on a couple of basic ones: a single master to multiple slaves, and multiple masters
to a single slave.

Historically, replication source servers have been called masters and
replication target servers have been called slaves. To avoid confusion,
we'll be using these names.

Replication in MariaDB

112

Setting up replication
Setting up replication is not hard as long as all the various bits are in place. This recipe is all
about the most basic concept of replication topologies; a single master server replicating to
multiple slaves is shown in the following diagram:

Getting ready
This recipe assumes that we have three servers. The servers are named db01, db02, and
db03, and they reside on the 192.168.4.0 network with IP addresses 192.168.4.101.to
192.168.4.103. One server, db01, will be our replication master, and the other two will be
our replication slaves.

For the purposes of this recipe, the servers are assumed to contain fresh installs of MariaDB,
with just the default databases set up.

How to do it...
1.	 On all three hosts, launch the mysql command-line client and connect to the local

MariaDB server with the root user (or another user with the GRANT privilege) and
run the following command:
GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.*

TO replicant@'192.168.4.%'

IDENTIFIED BY 'sup3rs3kr37p455w0rd';

2.	 Exit from the client and stop MariaDB.

3.	 Edit each system's my.cnf or my.ini file and add the following to the [mysqld]
section (it may already exist, so look for it first, and feel free to adjust the path
if desired):
log_bin = /var/log/mysql/mariadb-bin

Chapter 6

113

4.	 While editing the config file, change the bind address to the IP address of the server.

5.	 While editing the config file, on each server, set a unique server_id and
relay_log filename in the [mysqld] section for the db01 server as follows:
server_id = 101

relay_log = db01-relay-binlog

6.	 On both the replication slave servers, edit the system my.cnf or my.ini file and add
the following to the [mysqld] section:
read_only

7.	 Launch the mysql command-line client on the replication master server and run the
following command to discover the proper filename to use in the next step:
SHOW MASTER STATUS;

8.	 For this recipe, we'll get the following output:

9.	 Launch the mysql command-line client on each replication slave server and run the
following commands:
CHANGE MASTER TO MASTER_HOST='192.168.4.101',

MASTER_USER = 'replicant',

MASTER_PASSWORD = 'sup3rs3kr37p455w0rd',

MASTER_LOG_FILE = 'mariadb-bin.000150',

MASTER_LOG_POS = 0;

START SLAVE;

10.	 Run the following command and confirm that Slave_IO_Running and
Slave_SQL_Running are both Yes and that there are no errors:
SHOW SLAVE STATUS;

Replication in MariaDB

114

11.	 On the replication master server, launch the mysql command-line client and run the
following commands to create a database and insert some data:
CREATE DATABASE IF NOT EXISTS temp;

USE temp;

CREATE TABLE doctors (

 id int NOT NULL AUTO_INCREMENT PRIMARY KEY,

 given_names varchar(255),

 surname varchar(255),

 birthdate date);

INSERT INTO doctors VALUES (

 (1,'William','Hartnell','1908-01-08'),

 (2,'Patrick','Troughton','1920-03-25'),

 (3,'Jon','Pertwee','1919-07-07'),

 (4,'Tom','Baker','1934-01-20'));

12.	 On the replication slave servers, launch the mysql command-line client and run the
following commands to verify that the data entered on the replication master server
has been replicated to the replication slave servers:
USE temp;

SELECT * FROM doctors;

How it works...
The MariaDB binary log is at the heart of replicating from one machine to others. In basic
terms, events are written to the log on the replication master server and then to the database.
Replication slaves read the log on the replication master and apply them to their own copy of
the database.

For simplicity, the replicant user we created for this recipe has the permissions needed
on both the master and the slave servers. Strictly speaking, the REPLICATION SLAVE
privilege is only needed on the user we created on the replication master server and the
REPLICATION CLIENT privilege is only needed when we use the commands SHOW MASTER
STATUS; and SHOW SLAVE STATUS;. By configuring our replication user with both of these
privileges, we can use it for all of our replication tasks on any of our servers. And if we decide
down the road to promote one of the slave servers to be the master server, the user is already
set up and ready to go.

Chapter 6

115

The CHANGE MASTER TO command with its various variables is what actually configures the
replication. We could configure these variables in the my.cnf or my.ini config files, but this
is not recommended because it hardcodes the settings, which can interfere with our other
activities such as changing the master server on the fly.

The read_only variable is important because it prevents a rogue application or user from
trying to INSERT on a replication slave. Doing so is a great way to corrupt our data when
using a master-slave topology like we are using here.

For step 11, an alternative to typing out all of the commands to create the temp database,
create the doctors table, and INSERT the data is to download the 4399OS_06_01.sql
file from the book's website and to import it as follows:

mysql -u username -p < 4399OS_06_01.sql

Change username to a user that has rights to create a database and insert data. Also,
because it's a file and we don't have to type it in, the file inserts more rows of data than
are there in the recipe.

There's more...
There are many little things that are important to know about replication.

Common causes of replication failures
If the skip_networking variable is set in our my.cnf or my.ini file, MariaDB will limit
connections to localhost only. This will break replication, as the whole point is for multiple
servers to communicate with each other. This variable has been deprecated in favor of setting
the bind_address variable to 127.0.0.1, which does the same thing.

If we see Can't connect or Connection refused errors when we run SHOW SLAVE
STATUS;, then checking to see what both of these variables are set to is a good place to
start. The bind_address variable must be set to the IP address we use to access the server
remotely from other clients. If our server has one or more IP addresses assigned, such as a
public and private IP address for example, we will almost always want to set it to the private
IP address. Private IPv4 addresses are easy to recognize. They almost always take the form
of either 192.168.x.x or 10.x.x.x. Private IPv6 addresses also exist but are rarely used.
They begin with fd.

Another common failure is not setting the server_id variable. All servers in a replication
group must have unique server IDs. The default value, if the server_id variable is not
set, is 1. So, when setting it, choose a different number. Valid values are anything from
1 to 4,294,967,295.

Replication in MariaDB

116

Binary logs versus relay logs
In this recipe, the replication slaves are not configured to store a log of their own. They simply
read the binary log of the replication master server and apply it. The slaves can be configured
to store a log of their own by adding the following to the [mysqld] section of the my.cnf or
my.ini file:

log_slave_updates

Doing so adds some overhead to a slave server, but by setting this variable it can act as
a replication master with its own downstream slaves. In this way, multilevel replication
topologies can be created.

The log on the replication slaves is called the relay log instead of binary log. Both of these logs
have the same format. On replication slave servers, they are called relay logs simply to specify
that the log is from a replication master as opposed to being a log of activity on the local
server itself.

Safer replication
One good way to increase safety and crash protection for MariaDB is to set the following two
options in the [mysqld] section of our my.cnf or my.ini file:

innodb_flush_logs_at_trx_commit = 1

sync_binlog = 1

Both of these options force an explicit write-to-disk (fsync) operation whenever writing to
these files. This helps ensure that our data is written to the disk as soon as possible. This
adds safety in case of system failures or power outages to our databases and replication,
but it has the potential to really impact performance as extra fsync operations are relatively
expensive, resource wise. To combat this, the MariaDB developers have created a group
commit operation that groups fsync operations together whenever possible. The optimization
works best with highly parallel workloads and is enabled automatically. Enabling the variables
still results in slightly lower performance, but combined with the fsync grouping it is not so
bad that it isn't worth doing.

See also
ff A lot more information can be found in the replication section of the MariaDB

Knowledge Base at https://mariadb.com/kb/en/replication/

ff The full documentation of the group commit optimization can be found at
https://mariadb.com/kb/en/group-commit-for-the-binary-log/

Chapter 6

117

Using global transaction IDs
Global Transaction ID (GTID) is a new feature in MariaDB 10.0 and above. It helps us achieve
greater reliability and flexibility with our replication.

Getting ready
This recipe builds upon the previous one, so to get ready for this recipe, simply set up a basic
replication as described in the Setting up replication recipe.

How to do it...
1.	 On both our replication slave servers, launch the mysql command-line client and run

the following commands:
STOP SLAVE;

CHANGE MASTER TO MASTER_USE_GTID = SLAVE_POS;

START SLAVE;

2.	 Check on the status of our replication slave servers with the following command:
SHOW ALL SLAVES STATUS\G

3.	 Look at the bottom of the output for the following lines (the Gtid_Slave_Pos value
will likely be different and the lines are separated by several other lines in the output):
Using_Gtid: Slave_Pos

Gtid_Slave_Pos: 0-101-2320

4.	 Insert more data into our temp.doctors table on the replication master server, and
then run the following SELECT statement on our replication slave servers to confirm
that replication is still happening:
SELECT * FROM temp.doctors;

How it works...
The GTID feature is enabled automatically, but when replication slaves connect to master
servers, they can choose to use either the traditional filename and offset or GTID to determine
where to start replicating from. To use GTID, we use the MASTER_USE_GTID variable instead
of the MASTER_LOG_FILE and MASTER_LOG_POS variables.

Because we started with a server that was already set up and using a traditional filename
and position replication, the only thing we had to do was temporarily stop replication, set the
MASTER_USE_GTID variable, and then start replication up again.

Replication in MariaDB

118

There's more...
There are three possible values we can use for the MASTER_USE_GTID variable. The one we
used in the recipe is SLAVE_POS as this variable starts replication at the position of the last
GTID replicated to our slave server. This is a safe default value to use.

The other two possible values are CURRENT_POS and the actual GTID number we want to use.
Using CURRENT_POS is usually fine, unless we are changing a server from being the master
to being a slave. The value of CURRENT_POS is whatever binlog entry that server has in its
local binary log. If the most recent entry is something that doesn't exist on the current master
server, then replication to the slave will fail. If our slave server does not have binary logging
turned on, then the value of CURRENT_POS will be the same as SLAVE_POS.

The third option, using a specific GTID, is useful if we know exactly what number to start from,
but it's more of an expert option used only when we know it's the right thing to do. It's much
safer to stick to the other two.

See also
ff More about Global Transaction ID is available at

https://mariadb.com/kb/en/global-transaction-id/

ff The full documentation of the CHANGE MASTER TO command can be found at
https://mariadb.com/kb/en/change-master-to/

Using multisource replication
A familiar replication topology is one where we have a single master server and several slave
servers. Another alternative topology is where we have a single slave server connected to
multiple master servers. This is called multisource replication.

Getting ready
For this recipe, we'll be working on the assumption that we have three servers, db01, db02,
and db03, which are each running a fresh install of MariaDB. The first two will be our
replication masters, and the last one will be our replication slave as shown in the
following diagram:

Chapter 6

119

We'll further assume that all three servers are on the same subnet, 192.168.4.0, with the
final part of their individual IP addresses being 101, 102, and 103, respectively.

How to do it...
1.	 On all three servers, launch the mysql command-line client and run the following

command to add our replication user:
GRANT REPLICATION SLAVE, REPLICATION CLIENT ON *.*

 TO replicant@'192.168.4.%' IDENTIFIED BY 'sup3rs3kr37p455w0rd';

2.	 Quit the mysql command-line client and then stop MariaDB.

3.	 Edit the system my.cnf or my.ini file on each server. Make sure the log_bin
variable is set (it is by default).

4.	 On db01, add the following settings to the [mysqld] section:
bind_address = 192.168.4.101

relay_log = db01-relay-binlog

server_id = 101

5.	 On db02, add the following settings to the [mysqld] section:
bind_address = 192.168.4.102

relay_log = db02-relay-binlog

server_id = 102

6.	 On db03, add the following settings to the [mysqld] section:
read_only

replicate_ignore_db=mysql,information_schema,performance_schema

bind_address = 192.168.4.103

relay_log = db03-relay-binlog

server_id = 103

Replication in MariaDB

120

7.	 Start MariaDB on all three hosts.

8.	 On db03, launch the mysql command-line client and run the following commands:
CHANGE MASTER 'db01' TO MASTER_HOST='db01',

 MASTER_USER = 'replicant',

 MASTER_PASSWORD = 'sup3rs3kr37p455w0rd',

 MASTER_USE_GTID = CURRENT_POS;

CHANGE MASTER 'db02' TO MASTER_HOST='db02',

 MASTER_USER = 'replicant',

 MASTER_PASSWORD = 'sup3rs3kr37p455w0rd',

 MASTER_USE_GTID = CURRENT_POS;

START ALL SLAVES;

9.	 While on db03, in the mysql command-line client, run the following command to
check the replication status:
SHOW ALL SLAVES STATUS;

10.	 On db01 and db02, create databases with uniquely named tables on each server
and input data.

11.	 On db03, run queries to see that the data has been replicated.

How it works...
Multisource replication is a replication topology where there are many master servers
replicating to a single slave. Setting it up is very similar to setting up traditional replication
but with a few key differences.

One thing we need to do to prevent potential conflicts on the slave server is to list the tables
we want to ignore. This is done with the replicate_ignore_db option. In our recipe, we
set this option in the my.cnf or my.ini file, but it can also be set as a GLOBAL or SESSION
variable using the mysql command-line client. The option takes a comma-separated list of
the databases we want the slave server to not replicate. A good default is to set this to the
system database, mysql, and the performance_schema and information_schema, but
there may be other databases we don't want to replicate; if so, they should also be added to
the list.

Because we are dealing with multiple master servers, we need to name them when running
the CHANGE MASTER command. The name we choose is also used when running the SHOW
ALL SLAVES STATUS; command so we can tell the master servers apart.

Chapter 6

121

If we want to see the status of replication from an individual master server, we specify the
name in the SHOW SLAVE STATUS; command as follows:

SHOW SLAVE 'db02' STATUS;

There's more...
There will always be warnings when starting replication but they are just informational. The
number of warnings corresponds directly to the number of configured replication masters.
For example, refer to the following screenshot:

Other ignore options
We are not restricted to just ignoring whole databases; we can also ignore specific tables
using the replicate_ignore_table variable.

Instead of specifying the tables or databases to ignore, we also have the option of specifying
only the tables and databases we want to replicate. We use the replicate_do_table and
replicate_do_db options for this.

Additional files
After setting up multisource replication, a few new files will appear in our slave server's
data directory. These include a multi-master.info file and relay and .info files for
each master server we have configured. These files are used by MariaDB to keep track of
replication, so leave them alone.

See also
ff The full documentation of Multi-source replication can be found at

https://mariadb.com/kb/en/multi-source-replication/

Replication in MariaDB

122

Enhancing the binlog with row event
annotations

When using replication, it's popular to set binlog_format to row. The only issue with this is
that when we look at the binlog, it is harder to read because the statements aren't included.
We can see the changes but not the SQL statement that made the changes.

Getting ready
For this recipe, we'll assume that we've set up replication as described in either the Setting
up replication or Using multisource replication recipes earlier in this chapter. Pick a master
server and a slave server to use. In this recipe, we'll call the master server db01 and the
slave server db03.

How to do it...
1.	 On db01, edit the system my.cnf or my.ini file and add the following to the

[mysqld] section:
binlog_format = row

binlog_annotate_row_events

2.	 On db03, edit the system my.cnf or my.ini file and add the following to the
[mysqld] section:
binlog_format = row

replicate_annotate_row_events

3.	 Restart MariaDB on both servers.

4.	 On db01, launch the mysql command-line client and run the following commands:
DROP DATABASE IF EXISTS test;

CREATE DATABASE test;

USE test;

CREATE TABLE t1(a char(1));

INSERT INTO t1 VALUES ('a'),('b'),('c'),('d');

CREATE TABLE t2(a char(1));

INSERT INTO t2 VALUES ('a'),('b'),('c'),('d');

CREATE TABLE t3(a char(1));

INSERT DELAYED INTO t3 VALUES ('a'),('b'),('c'),('d');

DELETE t1, t2 FROM t1 INNER JOIN t2 INNER JOIN t3

 WHERE t1.a=t2.a and t2.a=t3.a;

Chapter 6

123

5.	 On db01, run the following command in the mysql command-line client:
SHOW BINLOG EVENTS;

6.	 While still on db01, exit the mysql command-line client and look in the mysql
directory under /var/log/ for the binlog file with the highest number. We'll assume
it's 150. Run the following command to look at the events stored in the file:
mysqlbinlog /var/log/mysql/mariadb-bin.000150

7.	 The result will have differences but will show annotations for binlog events similar
to the following screenshot:

How it works...
When binary logging is enabled, we can look through the log and see when changes
were made, but we don't see the statements that made those changes. Adding binlog_
annotate_row_events to our configuration tells MariaDB to annotate our binary log with
the statements that changed data. This makes it much easier to search through the binary log
to find the statement or event we are looking for.

Replication in MariaDB

124

There's more...
There are situations where we may want to output data from our binary logs without
the annotations. To do this, we simply add --skip-annotate-row-events to the
mysqlbinlog command when we run it. By default, mysqlbinlog will print annotations
if they are in the log.

See also
ff The full documentation of the annotate row events feature can be found at

https://mariadb.com/kb/en/annotate_rows_log_event/

ff The full documentation of the mysqlbinlog command can be found at
https://mariadb.com/kb/en/mysqlbinlog/

Configuring binlog event checksums
A rare, but still possible, problem can occur if the filesystem where we store our binary and
relay logs gets corrupted. It can be especially damaging if we don't detect it early on. Event
checksums are a way to detect this quickly.

Getting ready
For this recipe, we'll assume that we've set up replication as described in either the Setting up
replication or the Using multisource replication recipes earlier in this chapter. Pick a master
server and a slave server to use. In this recipe, we'll call db01 as the master server and db03
as the slave server.

How to do it...
1.	 On db01, launch the mysql command-line client and run the following commands:

SET GLOBAL BINLOG_CHECKSUM = 1;

SET GLOBAL MASTER_VERIFY_CHECKSUM = 1;

2.	 On db03, launch the mysql command-line client and run the following command:
SET GLOBAL SLAVE_SQL_VERIFY_CHECKSUM = 1;

How it works...
When checksums are enabled on our master and slave servers, it adds an extra layer of
checking as events are copied over and applied. This helps us better to detect filesystem
corruption of our binary and relay log files.

Chapter 6

125

When first enabled, the binary log file is immediately rotated so that we don't have a situation
where a part of a log file has checksums and the other part doesn't.

There's more...
In the recipe, we set the options dynamically so that we don't have to restart the server.
To make the settings permanent, we need to add them to the [mysqld] section of the
my.cnf or my.ini file.

The mysqlbinlog utility doesn't verify checksums by default. To have it do so, run it with
the --verify-binlog-checksum option.

See also
ff The full documentation of Binlog Event Checksums can be found at

https://mariadb.com/kb/en/binlog-event-checksums/

ff Also, refer to the Binlog Event Checksums interoperability page at https://
mariadb.com/kb/en/binlog-event-checksum-interoperability/

Selectively skipping the replication of binlog
events

Sometimes, we want to skip replicating certain events to our replication slave servers.
MariaDB lets us do this dynamically.

Getting ready
For this recipe, we'll assume that we've set up replication as described in either the Setting
up replication or Using multisource replication recipes earlier in this chapter. Pick a master
server and a slave server to use. In this recipe, we'll call db01 as the master server and db03
as the slave server.

How to do it...
1.	 On db01, launch the mysql command-line client and run the following command to

turn on replication skipping:
SET @@skip_replication=1;

2.	 On db01, create an empty database:
CREATE DATABASE w;

Replication in MariaDB

126

3.	 On db03, run the following commands to turn off replication of skipped events:
STOP SLAVE;

SET GLOBAL REPLICATE_EVENTS_MARKED_FOR_SKIP = FILTER_ON_MASTER;

START SLAVE;

4.	 On db01, create another empty database:
CREATE DATABASE wx;

5.	 On db03, switch to filtering on the slave:
STOP SLAVE;

SET GLOBAL REPLICATE_EVENTS_MARKED_FOR_SKIP = FILTER_ON_SLAVE;

START SLAVE;

6.	 On db01, create another empty database:
CREATE DATABASE wxy;

7.	 On db03, switch off filtering:
STOP SLAVE;

SET GLOBAL REPLICATE_EVENTS_MARKED_FOR_SKIP = REPLICATE;

START SLAVE;

8.	 On db01, create a fourth empty database:
CREATE DATABASE wxyz;

9.	 On db03, check to see whether only the first and last databases (w and wxyz) exist
(filtering was turned on when we created the wx and wxy databases).
SHOW DATABASES;

10.	 On db01, turn off @@skip_replication by using the following command line:
SET @@skip_replication=0;

How it works...
The @@skip_replication session variable, when set to true (that is, 1), causes all events
logged to the binary log on the master server to be flagged for skipping. Actual skipping only
happens if the slave servers have the REPLICATE_EVENTS_MARKED_FOR_SKIP variable set
to either FILTER_ON_MASTER or FILTER_ON_SLAVE. The default value for that variable is
REPLICATE, which means that events are replicated even though there's a skip flag set.

One possible way this feature can be used is if we have a situation where we need to create a
temporary database, give it some data, run some analytics or reports on it, and then drop it.
If it's just a temporary thing, we might not want it replicated to the slave servers.

Chapter 6

127

The actual filtering can take place either on the master server, by setting REPLICATE_
EVENTS_MARKED_FOR_SKIP to FILTER_ON_MASTER, or on the slave server by setting the
option to FILTER_ON_SLAVE. The end result is the same; the only difference is that with
FILTER_ON_SLAVE, the events are transferred over the network before they are filtered.

MariaDB does not have to be stopped to change the REPLICATE_EVENTS_MARKED_FOR_
SKIP variable, but replication does. So, in this recipe, we bracketed each change with STOP
SLAVE; and START SLAVE; commands. Trying to change it without stopping replication first
gives an error.

There's more...
While handy, this feature should be used with great caution. When events are not replicated,
the data on the master server will be different from the data on the slave. Many problems
could arise if this is handled badly. It is up to the application or user to properly handle this
by either replicating the data some other way or by thoroughly cleaning up when finished.

Another way to stop replication is to set @@sql_log_bin=0, but this stops all replication
to all slaves. By using the @@skip_replication variable instead, we can selectively stop
replication to specific slaves while continuing to replicate to other slaves.

See also
ff The full documentation of this is available at https://mariadb.com/kb/en/

selectively-skipping-replication-of-binlog-events/

7
Replication with

MariaDB Galera Cluster

In this chapter, we will cover the following recipes:

ff Installing MariaDB Galera Cluster

ff Dropping a node from MariaDB Galera Cluster

ff Shutting down MariaDB Galera Cluster

Introduction
Two of the primary reasons for replicating data between MariaDB servers are to provide
greater performance and more redundancy. The traditional master-slave replication covered
in Chapter 6, Replication in MariaDB, provides for great read performance by having several
read-only slave servers. However, it only solves the redundancy issue partially. In classic
replication, there is only one master server node, and if it fails, then one of the slave server
nodes must be promoted to become a master server node for the others. Getting this to work
correctly in an automated way is difficult.

An easier way to configure replication will be if every node was a master server node. Reads
and writes can happen to any of the nodes and the replication component will make sure that
everything just works.

MariaDB Galera Cluster makes this sort of replication easy to set up and use. Every node in a
Galera Cluster is equal, so if any single node fails it is alright. The cluster will continue running
and we can repair or replace the faulty node without worrying about whether it is a master or
a slave server.

Replication with MariaDB Galera Cluster

130

MariaDB Galera Cluster is only available on Linux-based operating systems,
so all the recipes in this chapter are Linux-only.

Installing MariaDB Galera Cluster
MariaDB Galera Cluster is a separate product from MariaDB. So, installing it is similar, but not
quite the same as installing MariaDB. In particular, the package names for MariaDB's server
components are different and there is an extra galera package that needs to be installed.

Getting ready
For this recipe, we'll assume that we have three servers named db01, db02, and db03, with
IP addresses 192.168.1.101, 192.168.1.102, and 192.168.1.103, respectively. We'll
further assume that they are all running fresh installs of Ubuntu 12.04 LTS.

How to do it...
1.	 On all the three hosts, install MariaDB Galera Cluster using the following commands:

sudo apt-key adv --recv-keys --keyserver keyserver.ubuntu.com
 0xcbcb082a1bb943db

sudo add-apt-repository 'deb
 http://ftp.osuosl.org/pub/mariadb/repo/10.0/ubuntu precise main'

sudo apt-get update

sudo apt-get install mariadb-galera-server

2.	 On all the three hosts, stop MariaDB using the following command so that we can
add modify the configuration:
sudo service mysql stop

3.	 On all the three hosts, create a galera_common.cnf file at /etc/mysql/conf.d/
with the following content:
Galera-common configuration
[mysqld]
wsrep-cluster-name = "test_cluster"
wsrep-provider = /usr/lib/galera/libgalera_smm.so
wsrep-provider-options = "gcache.size=256M;
gcache.page_size=128M"
wsrep-sst-auth = "galera:mypassword"
binlog-format = row
default-storage-engine = InnoDB
innodb-doublewrite = 1

Chapter 7

131

innodb-autoinc-lock-mode = 2
innodb-flush-log-at-trx-commit = 2
innodb-locks-unsafe-for-binlog = 1

4.	 On db01, create a galera_db01.cnf file at /etc/mysql/conf.d/ with the
following content:
Galera-specific configuration
[mysqld]
wsrep-node-name = "db01"
wsrep-new-cluster
wsrep-sst-receive-address = 192.168.1.101
wsrep-node-incoming-address = 192.168.1.101

5.	 On db01, start MariaDB using the following command:
sudo service mysql start

6.	 On db01, launch the mysql command-line client and run the following commands to
create a galera user:
GRANT ALL ON *.* TO 'galera'@'192.168.1.%' IDENTIFIED BY
 'mypassword';

FLUSH PRIVILEGES;

7.	 On db02 and db03, back up the /etc/mysql/debian.cnf file:
sudo cp -avi /etc/mysql/debian.cnf /etc/mysql/debian.cnf.dist

8.	 On db02 and db03, edit the /etc/mysql/debian.cnf file so that the passwords
match those in that file on db01.

9.	 On db02, create a galera_db02.cnf file at /etc/mysql/conf.d/ with the
following content:
Galera-specific configuration
[mysqld]
wsrep-node-name = "db02"
wsrep-cluster-address = gcomm://192.168.1.101
wsrep-sst-receive-address = 192.168.1.102
wsrep-node-incoming-address = 192.168.1.102

10.	 On db03, create a galera_db03.cnf file at /etc/mysql/conf.d/ with the
following content:
Galera-specific configuration
[mysqld]
wsrep-node-name = "db03"
wsrep-cluster-address = gcomm://192.168.1.101
wsrep-sst-receive-address = 192.168.1.103
wsrep-node-incoming-address = 192.168.1.103

Replication with MariaDB Galera Cluster

132

11.	 Start MariaDB on db02 and db03 using the following command:
sudo service mysql start

12.	 On all the three hosts, launch the mysql command-line client and run the
following command:
SHOW STATUS LIKE 'wsrep%';

13.	 In the output, the wsrep_incoming_addresses variable should have the IP
addresses of all the three servers, the wsrep_cluster_size variable should
be 3, and the wsrep_connected and wsrep_ready variables should both be ON.

14.	 On db01, edit the /etc/mysql/conf.d/galera_db01.cnf file. Remove the
wsrep-new-cluster line and replace it with the following line of code:
wsrep-cluster-address =
 gcomm://192.168.1.101,192.168.1.102,192.168.1.103

15.	 On db02 and db03, edit the /etc/mysql/conf.d/galera_db*.cnf files and
change the wsrep-cluster-address line to match the line we added to db01 in
the previous step.

16.	 Test out the cluster by creating databases and tables on one server, inserting data
on a different server, and reading the data on the third server. All changes will be
replicated to all the three servers regardless of which server the change is made on.

How it works...
As mentioned previously, MariaDB Galera Cluster is a separate product from MariaDB;
when installing it on Ubuntu and Debian, we specify the mariadb-galera-server package
instead of mariadb-server. The mariadb-galera-server package will pull in all of
the correct packages, including the important galera package, which contains the external
program that handles the replication between the hosts.

The minimum size of MariaDB Galera Cluster is three, so it is used in this
recipe. However, more nodes are recommended so that if a node (or two) fail,
the total number of nodes in the cluster never dips below three.

There are only a few settings that are unique to each individual cluster node; so in this recipe,
we put the common settings in one configuration file and the unique ones into a separate file.
All of these files are available to download from the book's website.

Chapter 7

133

Whenever a cluster node starts, it needs to know whether it should join an existing cluster or
start a new cluster. This is controlled via the wsrep-new-cluster and wsrep-cluster-
address variables. When the wsrep-new-cluster variable exists in our configuration,
MariaDB Galera Cluster knows to bootstrap a new cluster. When that line doesn't exist and
wsrep-cluster-address is set to gcomm://192.168.1.101, the node will try to connect
to that server and join the cluster that it is a part of. As nodes join, their addresses are shared
among all the cluster members so that every node knows where every other node is.

Older versions of MariaDB Galera Cluster used an empty gcomm:// value
to indicate that a new cluster should be created. This behavior has been
deprecated. Now, we should always use the wsrep-new-cluster variable
to indicate when we want to create a new cluster. Also, to avoid problems, we
should only have wsrep-new-cluster or wsrep-cluster-address
defined, never both and we should never use an empty gcomm:// value.

After the initial bootstrapping, it is a good idea to update our configuration to have the entire
cluster addresses listed in case we need to restart any of the nodes. We want our initial node
to connect to the running cluster instead of creating a new cluster, and we want our existing
nodes to have more connection options than just the first node (on the chance that it is down
when new nodes are trying to start up).

There's more...
The instructions in this recipe are specific to Ubuntu Linux, but they can easily be adapted to
Debian, CentOS, Red Hat, and Fedora. For Debian, the only difference is to change the add-
apt-repository line to point at a Debian repository instead of an Ubuntu repository. The
installation and configuration steps are the same.

For CentOS, Red Hat, and Fedora, apart from configuring the MariaDB Yum repository, the
major change is that the configuration files are placed under /etc/my.cnf.d/ instead of
/etc/mysql/conf.d/. Also, the packages to install on them are MariaDB-Galera-
server and MariaDB-client.

Additional nodes can be easily added by repeating the steps for db02 and db03, and updating
the configuration files with the appropriate IP addresses.

Use the repository configuration tool available at https://downloads.mariadb.org/
mariadb/repositories/ to generate the appropriate repository configurations.

Replication with MariaDB Galera Cluster

134

Configuring MariaDB Galera Cluster
To make things simple, Galera-specific status and configuration variables are all prefaced
with wsrep, so you can view them with the following commands:

SHOW STATUS LIKE 'wsrep%';

SHOW VARIABLES LIKE 'wsrep%'\G

There are also a few non-Galera-specific variables that should be set for MariaDB
Galera Cluster to run properly. The binlog-format, default-storage-engine,
and innodb-% variables from the recipe are the most important ones.

See also
ff The documentation of the various configuration and STATUS variables is available at

https://mariadb.com/kb/en/mariadb-galera-cluster-configuration-
variables/ and https://mariadb.com/kb/en/mariadb-galera-cluster-
status-variables/

ff The full documentation of MariaDB Galera Cluster is available at
https://mariadb.com/kb/en/galera/

ff The Codership group at https://groups.google.com/
forum/?fromgroups#!forum/codership-team is a great place to talk with
other Galera cluster users

ff The Galera wiki available at http://www.codership.com/wiki/ also contains
lots of information

Dropping a node from MariaDB Galera
Cluster

MariaDB Galera Cluster exists so that we can eliminate single points of failure in our
infrastructure. Once set up, a single node can be taken out of the cluster for maintenance
without impacting the rest of the cluster or causing downtime for our applications.

Getting ready
Create MariaDB Galera Cluster as described in the Installing MariaDB Galera Cluster recipe
earlier in this chapter. In this recipe, we'll be shutting down db03.

Chapter 7

135

How to do it...
1.	 On db03, run the following command to check whether the node is up to date:

mysql -e "SHOW STATUS LIKE 'wsrep_local_state_comment'"

2.	 If the value is synced, then the node is up to date and we can safely shut down the
node with the following command:
sudo service mysql stop

3.	 On the other cluster nodes, run the following command to check whether the node
has been destroyed:
mysql -e "SHOW STATUS LIKE 'wsrep_%'"

4.	 We'll know the node is destroyed if the number of nodes in wsrep_cluster_size
is 2 and the IP address of db03 is not listed in wsrep_incoming_addresses.

How it works...
All the nodes in MariaDB Galera Cluster are equal. We can read and write to any node we
wish and the changes will be replicated to all nodes. Because of this, dropping a node is
easier than with a traditional replication setup where we need to worry about which node
is the master server that the slave server nodes read. All nodes in MariaDB Galera Cluster
are primary master server nodes, so our only concern is that the node is up to date before
shutting it off like we would any single non-clustered MariaDB server.

There's more...
Nodes are usually taken down for maintenance reasons. Adding the node back is as easy
as starting it back up with the following command:

sudo service mysql start

There will be a period of time as it brings itself back up to date with the other nodes in the
cluster, but after a few seconds or minutes (depending on how far behind it is), it will be good
to go. We just check the value of the wsrep_local_state_comment variable on the joining
node and when it is synced, we know that the node is up to date.

See also
ff Information on various ways of monitoring our MariaDB Galera Cluster is available at

http://www.codership.com/wiki/doku.php?id=monitoring

Replication with MariaDB Galera Cluster

136

Shutting down MariaDB Galera Cluster
There can be a time when we want to shut down our entire cluster; maybe for a move to a
different facility, or because we are replacing it completely. Whatever the reason, this recipe
outlines the preferred way to do so.

Getting ready
Create MariaDB Galera Cluster as described in the Installing MariaDB Galera Cluster recipe
earlier in this chapter.

How to do it...
1.	 Ensure that any applications using the cluster are shut down.

2.	 On db03, run the following command to check whether the node is up to date:
mysql -e "SHOW STATUS LIKE 'wsrep_local_state_comment'"

3.	 If the value is synced, run the following command to shut down the node:
sudo service mysql shutdown

4.	 On db02 and db01, repeat the same steps, first on db02, and then on db01.

How it works...
Shutting down MariaDB Galera Cluster is just like shutting down MariaDB. To be careful,
we should make sure that the applications which use the cluster are shut down so that
the cluster is idle.

Then, it is just a simple matter of shutting down the nodes one at a time.

The only thing left to do after all nodes are shut down is to make a note of which node was
shut down last, as it will need to start up first if we want to restart the cluster. In our recipe,
we shut down db01 last, as it was the first one we started when creating the cluster. In
practice, it doesn't matter; we just need to know which one was shut down last as it will
be the cluster node that is most up to date. It may also be a good idea to remove the
wsrep-cluster-address line and add the wsrep-new-cluster line to the config on
db01 (or whichever server we shut down last) so that we don't have to remember to do it
prior to starting the cluster up again.

The danger with starting the cluster up again using a server that was not the last one to be
turned off is that it will not have the modifications or additions to our data that were made
in the time between when it was shut down and when the last node in the cluster was
shut down.

Chapter 7

137

See also
ff The full documentation of MariaDB Galera Cluster is available at

https://mariadb.com/kb/en/galera/

ff The Codership group at https://groups.google.com/
forum/?fromgroups#!forum/codership-team is a great place to talk with
other Galera cluster users

ff The Galera wiki available at http://www.codership.com/wiki/ also contains
lots of information

8
Performance and
Usage Statistics

In this chapter, we will cover the following recipes:

ff Installing the Audit Plugin

ff Using the Audit Plugin

ff Using engine-independent table statistics

ff Using extended statistics

ff Enabling the performance schema

ff Using the performance schema

Introduction
There are several ways of tracking and measuring our usage of MariaDB. Some, such
as the MariaDB Audit Plugin, come from third parties. Others, such as the performance
schema, are built in. All of this helps us know what is happening on our server so that we
can track our current usage better, analyze long term performance trends, and plan for our
future needs.

The recipes in this chapter introduce several auditing and tracking features that we can
enable in MariaDB.

Performance and Usage Statistics

140

Installing the Audit Plugin
There are many third-party tools that can enhance our MariaDB server. The Audit Plugin
from SkySQL is one of them. This plugin is used by organizations to comply with government
regulations that require the tracking and auditing of access to sensitive data.

Getting ready
Locate the plugin directory on your local machine. This can be done by connecting to MariaDB
using the mysql command-line client and then running the following command:

SHOW GLOBAL VARIABLES LIKE 'plugin_dir';

The directory displayed is our local MariaDB plugin directory.

How to do it...
1.	 Download the appropriate version of the MariaDB Audit Plugin (either Windows or

Linux) from the SkySQL downloads page available at http://www.skysql.com/
downloads/.

2.	 On Windows, navigate to the location where we downloaded the plugin ZIP file and
unpack it by right-clicking on the file in Windows Explorer and choosing Extract all....

3.	 On Linux, navigate to the location where we downloaded the plugin TAR file
and unpack it either by right-clicking on the file and choosing Extract Here in
our file manager or by using the tar command in a terminal window using the
following command:
tar -zxvf server_audit-1.1.5.tar.gz

4.	 When the file is unpacked, there will be a directory corresponding to the name
of the file. Inside the directory, there are subdirectories for 32-bit and 64-bit
computers and for debug versions of the plugin. Navigate to the non-debug directory
that corresponds to our machine. Most likely, this will be 64-bit. Inside the directory,
there will be a file named server_audit.so or server_audit.dll. This is the
plugin for Linux and Windows respectively.

5.	 Copy the plugin to our local MariaDB plugin directory. On Windows, we could select
the file, copy it with Ctrl + C, navigate to the plugin directory, and paste it with Ctrl + V.
On Linux, we can use the following command (altered to point at wherever our local
plugin directory is):
sudo cp -avi server_audit.so /usr/lib64/mysql/plugin/

Chapter 8

141

6.	 With the plugin in place, we now open the mysql command-line client and run the
following command to install and activate the plugin:
INSTALL PLUGIN server_audit SONAME 'server_audit.so';

7.	 Run the SHOW PLUGINS; command to verify that the audit plugin is present in the
list of installed plugins.

How it works...
The Audit Plugin is not included with MariaDB, so we need to download and install it manually.
The procedure we use in this recipe also applies to installing other third-party plugins. Some
plugins that we may choose to use will come as source code that we need to compile before
we can install them. Other plugins, such as the Audit Plugin, come precompiled and are ready
to use once we've copied them to the correct location.

After the plugin is in the plugin directory, we need to let MariaDB know that it exists and we
want to use it. We do this with the INSTALL PLUGIN command, just as we would for plugins
that ship with MariaDB and are not activated by default.

Finally, we verify that MariaDB has loaded the plugin by running the SHOW PLUGINS;
command. If the plugin appears in the output, then we know that it has been installed.

There's more...
If we want to remove the server_audit plugin, we will use the following command:

UNINSTALL PLUGIN 'server_audit';

If we are using the Audit Plugin to comply with a regulation, we may want to restrict the ability
to uninstall the plugin. To do this, we add the following code to the [mysqld] section of our
my.cnf or my.ini file:

plugin-load=server_audit=server_audit.so
server_audit=FORCE_PLUS_PERMANENT

Once we have added the code, we need to restart MariaDB to activate the change.
Once we do so, any attempt to uninstall the plugin will result in an error, and the plugin
will remain installed.

See also
ff The full documentation of the MariaDB Audit Plugin is available from SkySQL or in the

MariaDB Knowledge Base at https://mariadb.com/kb/en/mariadb-audit-
plugin/

ff The following Using the Audit Plugin recipe covers configuring and using the plugin

Performance and Usage Statistics

142

Using the Audit Plugin
Installing the MariaDB Audit Plugin, as described in the previous recipe, doesn't do a whole
lot for us. In order to get the most out of this plugin, we need to configure it. That is what this
recipe is about.

Getting ready
Complete the Installing the Audit Plugin recipe described earlier in this chapter to install the
Audit Plugin, prior to using the Audit Plugin.

How to do it...
1.	 Connect to MariaDB using the mysql command-line client with a user that has the

SUPER privilege.

2.	 Show the Audit Plugin variables with the following command:
SHOW GLOBAL VARIABLES LIKE 'server_audit%';

The preceding command displays an output similar to the following screenshot:

3.	 Turn off the audit logging with the following command:
SET GLOBAL server_audit_logging=OFF;

Chapter 8

143

4.	 Turn on the audit logging with the following command:
SET GLOBAL server_audit_logging=ON;

5.	 Force the audit logfile to rotate immediately with the following command:
SET GLOBAL server_audit_file_rotate_now=ON;

6.	 Show the location of the current logfile, whether the plugin is active (ON), and whether
there are any errors with the following command:
SHOW GLOBAL STATUS LIKE 'server_audit%';

The preceding command displays an output similar to the following screenshot:

7.	 Add the untrusted_user and untrusted_user2 users to the list of users to audit
and then check that they were added with the following commands:
SET GLOBAL server_audit_incl_users = 'untrusted_user';

SET GLOBAL server_audit_incl_users =
 CONCAT(@@global.server_audit_incl_users,
 ',untrusted_user2');

SHOW GLOBAL VARIABLES LIKE 'server_audit_incl_users';

Performance and Usage Statistics

144

The preceding commands display an output similar to the following screenshot:

8.	 Exclude the trusted_user and trusted_user2 users from audit logging and
then verify that they are excluded with the following commands:
SET GLOBAL server_audit_excl_users = 'trusted_user';

SET GLOBAL server_audit_excl_users =
 CONCAT(@@global.server_audit_excl_users, ',trusted_user2');

SHOW GLOBAL VARIABLES LIKE 'server_audit_excl_users';

The preceding commands display an output similar to the following screenshot:

Chapter 8

145

How it works...
Configuring the Audit Plugin is similar to configuring any other feature of MariaDB. Like many
variables, the Audit Plugin variables can be set dynamically while the server is running. To
make our settings permanent, we need to add them to the [mysqld] section of our my.cnf
or my.ini file.

By default, the Audit Plugin will track all users. We can limit the plugin to just track certain
users by using the server_audit_incl_users variable. Likewise, we can exclude specific
users from being audited by using the server_audit_excl_users variable.

When we use these variables, the Audit Plugin tracks the users listed without regard to the
user's hostname. This is because for auditing and regulatory purposes, where the user is
connecting from is not as important as what they are doing while connected. The location
of users is still tracked, but if we, for example, add the untrusted_user to the server_
audit_incl_users variable, all the following users will be tracked:

ff untrusted_user@'localhost'

ff untrusted_user@'192.168.1.%'

ff untrusted_user@'%'

There's more...
If a user appears in both the server_audit_incl_users and server_audit_excl_
users variables, the user will be logged. This is because the include variable has priority
over the exclude variable.

See also
ff The full documentation of the Audit Plugin is available from SkySQL or in the MariaDB

Knowledge Base at https://mariadb.com/kb/en/mariadb-audit-plugin/

ff The previous Installing the Audit Plugin recipe covers downloading and installing
the plugin

Using engine-independent table statistics
MariaDB includes a facility to gather statistics on all tables, no matter what storage engine
those tables use. The MariaDB optimizer can use these statistics to better calculate the
optimum query plans.

Performance and Usage Statistics

146

How to do it...
1.	 Connect to MariaDB using the mysql command-line client with a user that has the

SUPER privilege.

2.	 Run the following command:
SET GLOBAL use_stat_tables=complementary;

3.	 Force an update of the table statistics for a table with the following command
(change table_name to the name of an existing table):
ANALYZE TABLE table_name;

4.	 View the collected table, index, and column statistics with the following commands:
SELECT * FROM mysql.table_stats;

SELECT * FROM mysql.index_stats;

SELECT * FROM mysql.column_stats;

How it works...
How MariaDB uses the engine-independent table statistics is controlled by the use_stat_
tables variable. There are three valid values: never means that MariaDB will not use the
statistics, complementary means that MariaDB will use the statistics if similar statistics are
not provided by the storage engine, and preferably means that MariaDB will always use
the statistics and only fall back on the statistics provided by the storage engine if they don't
exist elsewhere.

We can force an update of the table's statistics using the ANALYZE TABLE command. If the
table's statistics are already up to date when we force an update, the output of the ANALYZE
TABLE command will say so.

Full table and index scans are used when collecting statistics. Depending on the size of our
table or index and how busy our server is, this could be an expensive operation. Often, the
benefits outweigh the cost, but it is something to keep in mind.

In certain cases, it may be preferable to only collect statistics on certain columns or indexes.
The ANALYZE TABLE command in MariaDB allows this. For example, to only gather statistics
on certain columns and indexes of a table, the following syntax is used:

ANALYZE TABLE table_name PERSISTENT FOR
 COLUMNS (column_1,column_2,...)
 INDEXES (index_1,index_2,...);

Chapter 8

147

There's more...
The use_stat_tables variable also controls the behavior of the ANALYZE TABLE command.
When the variable is set to never, the command will only update the statistics provided by
the storage engine, and engine-independent statistics will not be gathered. If the variable
is set to either complementary or preferably, then both the engine-independent and
storage-engine-provided statistics will be updated when the ANALYZE TABLE command
is run.

See also
ff The full documentation of engine-independent table statistics is available at

https://mariadb.com/kb/en/engine-independent-table-statistics/

Using extended statistics
MariaDB includes a powerful feature for collecting extended user statistics. These statistics
can be used to better understand how our server is behaving and to locate and identify the
sources of our server's load.

How to do it...
1.	 Connect to MariaDB using the mysql command-line client with a user that has

the SUPER privilege.

2.	 Enable statistics collection with the following command:
SET GLOBAL userstat=1;

3.	 Run the following commands to show the statistics collected since collection
was enabled:
SHOW CLIENT_STATISTICS;

SHOW INDEX_STATISTICS;

SHOW TABLE_STATISTICS;

SHOW USER_STATISTICS;

4.	 Run the following commands to flush the statistics by resetting the statistics
counters to zero:
FLUSH CLIENT_STATISTICS;

FLUSH INDEX_STATISTICS;

FLUSH TABLE_STATISTICS;

FLUSH USER_STATISTICS;

Performance and Usage Statistics

148

How it works...
Extended statistics collection is off by default so that it does not cause unnecessary or
unwanted load on the server. Enabling it is easy though and if desired, statistics gathering can
be turned on and off at will. This can be very useful for gathering statistics on a busy server
while minimizing the impact on that server.

There are four types of statistics that are collected: CLIENT, INDEX, TABLE, and USER
statistics. The statistics are stored in the information_schema database in the CLIENT_
STATISTICS, INDEX_STATISTICS, TABLE_SATISTICS, and USER_STATISTICS tables
respectively. The SHOW command provides an easy way to view the collected statistics, but
we can also directly query the tables in the information_schema database if we want a
custom view of the data.

The type of data gathered includes features such as the total number of connections; the
number of simultaneous (concurrent) connections; the number of bytes sent and received;
the number of rows read, sent, or deleted; and so on.

There's more...
To turn on extended statistics so that it is always on, we need to add the following code to the
[mysqld] section of our my.cnf or my.ini file:

userstat = 1

Keeping the extended statistics collection on all the time is OK if our database server is not
very busy. However, if it is very busy and we need to gather statistics so that we know how the
server is being used, we should only enable the statistics collection manually and then only
for brief periods.

See also
ff The full documentation of the user statistics feature is available at

https://mariadb.com/kb/en/user-statistics/

Enabling the performance schema
The performance schema is a tool that we can use to monitor our server performance.
It is disabled by default, but it can easily be enabled.

Chapter 8

149

How to do it...
1.	 Open our my.cnf or my.ini file and add the following code to the

[mysqld] section:
performance_schema

2.	 Restart MariaDB.

3.	 Connect to MariaDB using the mysql command-line client.

4.	 Run the SHOW ENGINES; command and verify that PERFORMANCE_SCHEMA is listed.
The performance schema entry will look similar to the following screenshot:

5.	 Switch to the performance_schema database using the following command:
USE performance_schema;

6.	 Show the performance schema tables using the following command:
SHOW TABLES;

How it works...
The performance schema is implemented as a storage engine. This is why it shows up
alongside other storage engines when we use the SHOW ENGINES; command. However,
it is not a storage engine for storing data. The purpose of the performance schema is to help
us monitor server performance and when it is enabled, the performance schema creates a
special performance_schema database that includes several tables that we can query to
monitor our server performance.

Performance and Usage Statistics

150

There's more...
If we try to create a table with the performance schema as the engine, we will get the
following error:

ERROR 1005 (HY000): Can't create table 'test'.'t1' (errno: 131
 "Command not supported by database")

See also
ff The full documentation of the performance schema is available at

https://mariadb.com/kb/en/performance-schema/

Using the performance schema
Using the performance schema is similar to querying a table or set of tables.

Getting ready
Enable the performance schema as described in the Enabling the performance schema
recipe earlier in this chapter.

How to do it...
1.	 Connect to MariaDB using the mysql command-line client. List how many current

connections the users have and how many connections they had in total (we might
want to log in and out a few times with example users to populate this table):
SELECT * FROM performance_schema.users;

The preceding commands display an output similar to the following screenshot:

Chapter 8

151

2.	 Look up for the detailed information on all of the currently running user
connection threads:
SELECT * FROM performance_schema.threads

 WHERE type="foreground"\G

The preceding commands display an output similar to the following screenshot:

3.	 Add the following code to the [mysqld] section of our my.cnf or my.ini file and
then restart MariaDB to disable the collection of user connection statistics:
performance_schema_users_size=0

4.	 Log in and out a few times with various users (real or example) and then rerun the
command we ran in step 2 to look at the user connection statistics. Since we disabled
the collection, the output of this information will look similar to the following screenshot:

5.	 Remove the performance_schema_users_size=0 line we added to our my.cnf
or my.ini file in step 4 and then restart MariaDB.

6.	 Rerun the command from step 2 to verify that the user connection statistics are being
collected again (there will be limited output because we just restarted MariaDB).

Performance and Usage Statistics

152

How it works...
Looking up the data in the performance schema is just like looking up the data in any other
database table. We simply use the SELECT statements to query the performance schema
for the information we are interested in.

Performance schema variables are not dynamic; this means that they can't be set while
MariaDB is running. So, at any time, if we want to add or alter a performance schema
variable, we need to add it to the [mysqld] section of our my.cnf or my.ini file and
then restart MariaDB.

There's more...
Another way to set performance schema variables is to specify them on the command line
when starting MariaDB. For example, to turn off the collection of user connection statistics on
the command line, we will add the following line to our command to start the mysqld server:

--performance_schema_users_size=0

While this is a valid way to do it, it is easier and better to just add the variable we want to set
to our configuration file.

See also
ff The full documentation of the performance schema is available at

https://mariadb.com/kb/en/performance-schema/

ff A full list of all the performance schema tables and links to detailed information
on each one is available at https://mariadb.com/kb/en/list-of-
performance-schema-tables/

9
Searching Data

Using Sphinx

In this chapter, we will cover the following recipes:

ff Installing SphinxSE in MariaDB

ff Installing the Sphinx daemon on Linux

ff Installing the Sphinx daemon on Windows

ff Configuring the Sphinx daemon

ff Searching using the Sphinx daemon and SphinxSE

Introduction
With any growing or evolving database, there comes a time when the limitations of MariaDB's
built in, full text-searching functionality becomes more of a hindrance than its convenience
is worth. At that point, another method is needed to efficiently index and search through our
textual data. This is where Sphinx comes in.

There are actually two parts to Sphinx: an external daemon called Sphinx that does the work
of building and maintaining the search index using that we use to search our data, and a
storage engine component called SphinxSE that is part of MariaDB, which the Sphinx daemon
uses to talk to MariaDB. The recipes in this chapter will cover setting up and using both these.

Searching Data Using Sphinx

154

Installing SphinxSE in MariaDB
Before we can start using Sphinx, we need to enable SphinxSE in MariaDB.

How to do it...
1.	 Open the mysql command-line client and connect to our database server with a user

that has the SUPER privilege.

2.	 Run the following command to install SphinxSE:
INSTALL SONAME 'ha_sphinx';

3.	 Run the following command, shown as follows, to check that the Sphinx Storage
Engine (SphinxSE) is enabled (the Support column will say YES):
SHOW storage engines;

Chapter 9

155

4.	 Run the following command to view the SphinxSE status variables (they will
be empty):
SHOW STATUS LIKE 'sphinx_%';

How it works...
SphinxSE is included in MariaDB, but it is disabled by default. To enable it, we
run the INSTALL SONAME command with the name of the plugin (ha_sphinx).
This is a one-time operation.

Once SphinxSE is enabled in this manner and if we have the external Sphinx daemon installed
and running, we can start using Sphinx to search our data. This is the topic of the following
two recipes.

There's more...
The following are a couple of minor things to keep in mind when working with SphinxSE.

SphinxSE versus Sphinx
Despite its name, SphinxSE does not actually store data. It's called a storage engine because
it uses the storage engine API to communicate with the rest of MariaDB. In reality, SphinxSE is
a client that talks to an externally running indexing and searching program (or daemon) called
Sphinx. SphinxSE's purpose is to allow us to talk to the Sphinx daemon from within MariaDB.

Getting SphinxSE's status
Another way to get the status of SphinxSE is to use the following command:

SHOW ENGINE SPHINX STATUS;

Searching Data Using Sphinx

156

For the SHOW STATUS command, if we haven't actually started using Sphinx, there won't be
any status to display. The difference is that with SHOW ENGINE SPHINX STATUS; if there
is nothing to display, then there will be no output. The output of the preceding statement is
shown as follows:

So, with the SHOW STATUS command, all the status variables are shown even if they have
no values to display, and with the SHOW ENGINE SPHINX STATUS command, only status
variables that have something to tell us will be shown.

See also
ff The full documentation of SphinxSE is available at:

https://mariadb.com/kb/en/sphinx-storage-engine/

Installing the Sphinx daemon on Linux
In order to use SphinxSE and Sphinx, we must install the daemon on our server. This recipe
covers the process for Linux servers running Ubuntu, Debian, Red Hat, Fedora, or CentOS.

How to do it...
1.	 On Red Hat, CentOS, Ubuntu, or Debian, go to the Sphinx download site at

http://sphinxsearch.com/downloads/release/ and download the
latest Sphinx package for our Linux distribution.

2.	 On Debian or Ubuntu servers, run the following statement to install the
Sphinx daemon:
sudo apt-get install unixodbc libpq5 mariadb-client

sudo dpkg -i sphinxsearch*.deb

3.	 On Red Hat and CentOS, run the following statement to install the Sphinx daemon:
sudo yum install postgresql-libs unixODBC

sudo rpm -Uhv sphinx*.rpm

4.	 On Fedora, run the following command to install Sphinx:
sudo yum install sphinx

Chapter 9

157

5.	 On all server types, configure the Sphinx daemon as described in the Configuring the
Sphinx daemon recipe in this chapter.

6.	 On Ubuntu and Debian, edit the /etc/default/sphinxsearch file and set
START=yes. Then run the following command to start the Sphinx daemon:
sudo service sphinxsearch start

7.	 On Fedora, CentOS, or Red Hat, run the following command to start the
Sphinx daemon:
sudo service searchd start

8.	 To stop the Sphinx daemon, run the service command again, this time with stop
instead of start.

How it works...
The Sphinx daemon is in the package repositories for CentOS, RedHat, Fedora, Ubuntu,
and Debian. However, it is usually older than the version available directly from the official
Sphinx website. The versions included in the package repositories also do not include the API
files that let us easily integrate searching using Sphinx into our applications. These files are
sometimes available as separate packages, but not always, so it's better to get Sphinx straight
from the source so that we have everything we may need.

In Debian and Ubuntu, the Sphinx package and daemon are called sphinxsearch. In Red
Hat, Fedora, and CentOS, the package is called sphinx and the daemon is called searchd.

See also
ff The complete documentation of installing and using Sphinx is available on the Sphinx

website: http://sphinxsearch.com/docs/current.html.

Installing the Sphinx daemon on Windows
In order to use Sphinx, we must install the daemon on our server. This recipe is all about
installing the Windows version of the Sphinx daemon.

How to do it...
1.	 Go to http://sphinxsearch.com/downloads/release/ and download the

latest version of Sphinx for MySQL, either the 64-bit or 32-bit version depending on
our version of Windows. For this recipe, we'll assume that we're running a 64-bit
version of Windows.

Searching Data Using Sphinx

158

2.	 Navigate to the Downloads folder and extract the ZIP file.

3.	 Extract the file to a location that is convenient. This recipe will assume that we
extracted the files to C:\Sphinx (as the Sphinx docs recommend).

4.	 If the unzipping process creates a Sphinx subfolder (such as sphinx-2.1.3-
release-win64) under C:\Sphinx move the contents of that subdirectory
to the C:\Sphinx folder and then remove the empty directory using the
following statements:
cd C:\Sphinx

mv .\sphinx-2.1.3-release-win64* .\

rmdir sphinx-2.1.3-release-win64

5.	 Configure Sphinx as described in the Configuring the Sphinx daemon recipe in
this chapter

6.	 Complete the Getting ready portion of the Searching with the Sphinx daemon and
SphinxSE recipe in this chapter and then run the following command:
C:\Sphinx\bin\indexer --all

7.	 Open a PowerShell or terminal window and install the Sphinx searchd program as a
Windows service with the following commands:
cd C:\Sphinx

C:\Sphinx\bin\searchd --install –-config C:\Sphinx\sphinx.conf
--servicename SphinxSearch

8.	 The output of the previous step will be similar to the following screenshot:

9.	 Open the Windows Management Console (also called Computer Management under
the Tools menu of the Server Manager), click on the Services and Applications
toggle, and then click on Services.

10.	 Locate SphinxSearch in the list of services. Right-click on it and choose Start as
shown in the following screenshot:

Chapter 9

159

How it works...
The Sphinx developers do not provide an MSI install package for Windows like the MariaDB
developers do. Instead, they simply offer a ZIP file that we can download and use to install
Sphinx manually.

There are several different versions of Sphinx that we can download. Any of the ones that
mention MySQL is fine. We can download the ones that also include PostgreSQL and PgSQL
support if we want, but they are only needed if we are using those databases in addition
to MariaDB.

When we unzip the files, it helps if we put them in an easy-to-remember and easy-to-use
location. So in this recipe we use C:\Sphinx\. In order to successfully start the Sphinx
service, we need to bootstrap the search database by creating and populating our documents
table and then use the indexer program to create our initial search index. After that is done
we can run the command to install the SphinxSearch service and then start it.

There's more...
We can name the Windows service whatever we want. The Sphinx documentation
recommends using the name SphinxSearch. Another popular choice is to name
it searchd just like it is named in CentOS, Red Hat, and Fedora Linux.

Searching Data Using Sphinx

160

See also
ff The complete documentation of the various Sphinx configuration options is available

on the Sphinx website at http://sphinxsearch.com/docs/current.html

Configuring the Sphinx daemon
In order to use Sphinx, we need to add a user to our MariaDB database and configure the
Sphinx daemon so that it indexes the content we want it to.

Getting ready
Install the SphinxSE as described in the Installing SphinxSE in MariaDB recipe in this chapter.
Install the Sphinx daemon as described in either the Installing the Sphinx daemon on Linux
recipe or the Installing the Sphinx daemon on Windows recipe, both in this chapter, depending
on which operating system we are using.

How to do it...
1.	 Open the mysql command-line client and create a user with SELECT rights for

the tables in the databases we want the Sphinx daemon to index, using the
following statements:
CREATE USER 'sphinx'@localhost

 IDENTIFIED BY 'sphinxsecretpassword';

GRANT SELECT on test.* to 'sphinx'@localhost;

2.	 Move the default sphinx.conf file out of the way; for example, the following will
work on Linux:
sudo mv -vi sphinx.conf sphinx.conf.dist

3.	 Create a new sphinx.conf file in a text editor (such as vim, gedit, or pluma on Linux
or Notepad on Windows) with the following statements:
#---

Example data source and index config

#---

source docstbl {

 type = mysql

 sql_host = localhost

 sql_user = sphinx

Chapter 9

161

 sql_pass = sphinxsecretpassword

 sql_db = test

 sql_port = 3306

 sql_attr_timestamp = date_added

 sql_query = \

 SELECT id, UNIX_TIMESTAMP(date_added) AS date_added, \

 title, content FROM documents

 sql_query_info = SELECT * FROM documents WHERE id=$id

}

index docsidx {

 source = docstbl

 path = /tmp/docsidx

 dict = keywords

}

indexer {

 mem_limit = 32M

}

searchd {

 pid_file = /var/run/sphinxsearch/searchd.pid

}

4.	 On Windows, the pid_file and path lines will need to be changed to valid paths.
They are as follows:
path = C:\Sphinx\docsidx
pid_file = C:\Sphinx\sphinx.pid

How it works...
The Sphinx daemon indexes our data using a database user that has the SELECT privilege
on the tables we specify. We could use an existing user, but it's far better to create one
specifically for the Sphinx daemon that only has the SELECT right on specific databases and
tables we want it to have access to. For our recipe, we create a user named sphinx and grant
it the SELECT right on all of the tables in the test database.

After creating the user, we need to inform the Sphinx daemon of the name and password of
the user, the database to connect to, and the query to use when building our index, among
other things. The Sphinx daemon's configuration file is named sphinx.conf, and it will be in
one of the few different locations depending on our operating system. The actual configuration
files are very similar; the main differences are the paths to various locations, which are
different depending on where those locations are on our operating system.

Searching Data Using Sphinx

162

On Windows, the sphinx.conf file is located wherever we unzipped the files. A common
location is C:\Sphinx\sphinx.conf. On Red Hat, Fedora, or CentOS, the sphinx.conf
file is located in /etc/sphinx/sphinx.conf. On Ubuntu and Debian, the sphinx.conf
file is located in /etc/sphinxsearch/sphinx.conf.

The default configuration file contains examples of every possible option with short
descriptions for each of them. Most are commented out in the file as they aren't needed.

The actual variables we need to set are quite minimal. To make it easy, the book's website has
a file, 4399OS_09_sphinx.conf, with the configuration from the recipe. We can simply add
the contents of this file to our local sphinx.conf file instead of manually typing it in.

One important note is that in the example, the path to the index is set to /tmp/docsidx.
In reality, we would likely never want to store our index in the /tmp/ directory. This location
is fine for our test index though. A better place on Linux would be under /var/lib/. For
example, the default location for our index file on Ubuntu and Debian would be /var/lib/
sphinxsearch/data/docsidx

The descriptions in the example configuration file are often enough to understand what
the variable in question does, so there is no need to go through all of them here. The main
purpose of the configuration file is to define our data sources in the source{} sections,
define indexes attached or based on those data sources in the index{} sections, and set
options for Sphinx's indexer and searchd, the two main parts of the Sphinx daemon,
which do the work of indexing and searching through our data, respectively.

There's more...
There are a few things to keep in mind when configuring Sphinx. They are discussed in the
following sections.

The Sphinx daemon and MariaDB on different hosts
First, the Sphinx daemon doesn't have to run on the server running MariaDB. It can talk to our
database over a network connection just like any other MariaDB client. In that case, we just
set the sql_host option to the hostname or IP address of our MariaDB server and configure
everything else in the same manner as if we were running both on the same server. We just
need to remember that the user we create must be able to login from the server on which
Sphinx is running.

Sphinx queries
Another thing to study when looking at the example configuration file is that when we set up
our data sources, one of the things we do is to define a query with the sql_query variable.
This query could be something simple like the following code:

SELECT id, data FROM documents

Chapter 9

163

Or it could be something more complex like what we used in the recipe:

sql_query = \

 SELECT id, group_id, \

 UNIX_TIMESTAMP(date_added) AS date_added, \

 title, content \

FROM documents

In either case, the very first column must be an integer. This first column is the document ID
in Sphinx and it is mandatory. The second thing is that any data we want to be searchable
must be returned by this query (or in the query part of another data source section). If it isn't,
Sphinx won't know about it, so it won't be able to help us search for it.

This goes both ways as there may be cases where we don't want some data to be searchable.
In this case, just don't include it in the sql_query and Sphinx will not even see it.

Now that we have the Sphinx daemon configured, we can test it by searching for our data.
That is the topic of the following recipe.

See also
ff The complete, detailed documentation for configuring Sphinx is available on the

Sphinx website at http://sphinxsearch.com/docs/current.html

Searching with the Sphinx daemon and
SphinxSE

After completing the other recipes in this chapter, this is the recipe where we actually get to
see Sphinx doing something.

Getting ready
This recipe requires that we install and configure SphinxSE and the Sphinx daemon. See the
previous recipes in this chapter for instructions.

Searching Data Using Sphinx

164

In the previous recipe, we configured the Sphinx daemon to index and search a table called
documents in the test database. For the purposes of this recipe and to match the previous
recipe, we need to create this table with the following CREATE TABLE command:

CREATE TABLE documents (

 id SERIAL PRIMARY KEY,

 date_added TIMESTAMP,

 title VARCHAR(256),

 content TEXT

);

We also need to add some example data to the table. The 4399OS_09_documents.sql file,
available from this book's website, will create the table and populate it with some example
data. We can load the file using the following statement:

mysql -u user -p test < 4399OS_09_documents.sql

We'll need to change the user to a valid username and provide a valid password
when prompted.

How to do it...
1.	 In a terminal window, stop the Sphinx daemon if it is running and then start it again.

2.	 Run the following indexer command:
indexer --rotate –all

3.	 Run the following search command:
search -q nosql

Chapter 9

165

4.	 Open the mysql command-line client, connect to the test database, and create a
SphinxSE table connected to our local Sphinx daemon:
CREATE TABLE documents_search (

 id BIGINT UNSIGNED NOT NULL,

 weight INT NOT NULL,

 query VARCHAR(3072) NOT NULL,

 INDEX(query)

) ENGINE=SPHINX;

5.	 Test your documents_search table by running some queries, such as the following:
SELECT * FROM documents_search WHERE query='nosql';

SELECT * FROM documents_search WHERE query='sphinx';

Searching Data Using Sphinx

166

6.	 Exit the mysql command-line client, stop MariaDB, relaunch the mysql command-
line client by connecting directly to the Sphinx daemon, and run the following queries:
mysql -u root -h 0 -P 9306

SELECT * FROM docsidx WHERE MATCH('syntax diagrams');

SELECT * FROM docsidx WHERE MATCH('diving');

SELECT * FROM docsidx WHERE MATCH('tokudb|cassandra');

How it works...
There are several ways to search through our data using SphinxSE and the Sphinx daemon.
However, before doing that, we need to index our data using the indexer command;
so, that's what we do first.

Chapter 9

167

The Sphinx daemon ships with a command-line utility called search, which we can use to
search through our indexes directly. This is useful for testing to make sure our data has been
indexed correctly and in shell scripts.

The second way of searching our data is with SphinxSE. As a storage engine, to use SphinxSE,
we need to create a table. This table looks like a regular table for the most part, but when
creating it, what we are really doing is defining our connection to the Sphinx daemon. The
table has three columns and an index. We can name them what we want, but their datatypes
need to match what SphinxSE and the Sphinx daemon expect. The first column is for the id of
our documents; it must be defined as BIGINT and its natural name is id. The second column
is the weight. This column will show us an integer. The higher the number, the better the
document matches our query. The third column is for our queries. In our recipe, we name
this column query, but another common name is q.

The last part of the SphinxSE table definition is to set the ENGINE for the table to SPHINX.
We could also set a CONNECTION parameter, which has the following form:

CONNECTION="sphinx://HOST:PORT/INDEXNAME"

By leaving this parameter off in our table definition, SphinxSE goes with the default values,
which are as follows:

CONNECTION="sphinx://localhost:9312/*"

After setting up our special SphinxSE table, we can search for data using a simple SELECT
statement with our query in the WHERE clause. SphinxSE will reply with the ID of the
documents that match along with three columns of information. The first will be an id column
containing the IDs of the matching documents. The second column, named weight contains
an integer. The higher this number, the better it matches our query. The third column contains
our actual query.

Finally, in our recipe, we have some fun and connect directly to the Sphinx daemon. We can
do this because it speaks the MariaDB binary network protocol. We're not actually connecting
to MariaDB; we turned it off after all. Here, we use the mysql command-line client but we
could use any MariaDB-compatible client.

The SQL we use in queries using this special mode is actually a Sphinx-specific variant called
SphinxQL. It is a subset of the regular SQL and is used specifically for Sphinx queries from the
command-line (or another) client.

There's more...
To get the most out of SphinxSE and the Sphinx daemon, we probably want to make use of the
Sphinx API.

Searching Data Using Sphinx

168

There isn't time here to go into how to use the Sphinx APIs for the various programming
languages that Sphinx supports. Thankfully, there are example test programs included
with the Sphinx daemon for all of them.

On Windows, they can be found under the C:\Sphinx\api folder (if we unzipped
Sphinx to C:\Sphinx). On Linux, the examples are generally found under /usr/share/
sphinxsearch/api/ or /usr/share/sphinx/api/ depending on whether we're using
.deb or .rpm packages, respectively.

See also
ff The full documentation of SphinxQL can be found at

http://sphinxsearch.com/docs/current.html#sphinxql-reference

ff The full documentation of rt indexes can be found
at http://sphinxsearch.com/docs/current.html#rt-indexes

ff Some examples showing the differences between using SphinxQL and the API can
be found at http://sphinxsearch.com/blog/2013/07/23/from-api-to-
sphinxql-and-back-again/

10
Exploring Dynamic

and Virtual Columns
in MariaDB

In this chapter, we will cover the following recipes:

ff Creating tables with dynamic columns

ff Inserting, updating, and deleting dynamic column data

ff Reading data from a dynamic column

ff Using virtual columns

Introduction
One recent trend in the database world has been the development and use of NoSQL
databases. This trend arose from a realization that relational database servers that use
SQL, such as MariaDB, are not always the right tool for the job. Sometimes nonrelational,
specialized, scalable, and clustered key-value databases work better for specific tasks.

Another trend is the addition of virtual columns to databases. These columns don't change
how the data is accessed as dynamic columns do. What they do is change how the data
in them is stored. In short, the data is derived from the values of other columns in the row,
similar to a spreadsheet.

The MariaDB developers see the value in such nontraditional database features, and have
implemented these and others in MariaDB to make it as flexible and as capable a database
server as possible.

Exploring Dynamic and Virtual Columns in MariaDB

170

Both the chapters following this one delve into a couple of additional NoSQL features of
MariaDB, HandlerSocket and the Cassandra storage engine, respectively.

This chapter includes several syntax diagrams and data type definitions. The
parts of these diagrams and definitions in square brackets [] are optional.
Also, a series of three dots ... (also called an ellipsis) means that the
previous part in the bracket can be repeated.

Creating tables with dynamic columns
Tables with dynamic columns are similar to regular tables, but not quite the same. Similar
to standard tables, they have columns and rows. The difference is that each row can have a
different number of columns holding the data and the data types that are appropriate for
that row.

How to do it...
1.	 Launch the mysql command-line client and connect to our MariaDB server.

2.	 Create a test database and use it with the following command:
CREATE DATABASE IF NOT EXISTS test;

USE test;

3.	 Create a table with a standard PRIMARY KEY column and a BLOB column using the
following commands:
CREATE TABLE dyn_example (

 id SERIAL PRIMARY KEY,

 dyn_cols BLOB

);

How it works...
The dynamic columns feature in MariaDB is a set of special functions that allow us to define
and redefine the number of columns and their data types as needed on a row-by-row basis
without altering our table configuration. These special columns exist and are defined as a
standard BLOB column in our CREATE TABLE command. But unlike a regular BLOB column,
we will only interact with this column using several special dynamic columns helper functions.
We will cover these helper functions in the Inserting, updating, and deleting dynamic column
data and Reading data from a dynamic column recipes in this chapter.

Chapter 10

171

The two things that a table with dynamic columns needs are an id column (or something
similar) for PRIMARY KEY and a column with the type BLOB. Other columns can also be a
part of the definition, but these are the ones that need to be there.

There's more...
When using dynamic columns, there are a couple of limitations to know about. The first is
that the maximum number of dynamic columns we can define inside a single dynamic column
BLOB is 65,535. Next, the total length of a packed dynamic BLOB column is whatever the
max_allowed_packet size variable is set to, up to one gigabyte.

Normally, the server handles all the interactions with dynamic columns and the client only
calls the various dynamic columns functions. It is possible, however, for clients to directly
manipulate and interact with dynamic columns using an API. The API is part of the libmysql
client library.

See also
ff The full documentation of dynamic columns can be found at https://mariadb.

com/kb/en/dynamic-columns/ and https://mariadb.com/kb/en/
dynamic-columns-in-mariadb-10/

ff The documentation of the dynamic columns API is available at
https://mariadb.com/kb/en/dynamic-columns-api/

ff Refer to the Inserting, updating, and deleting dynamic column data and Reading
data from a dynamic column recipes in this chapter

Inserting, updating, and deleting dynamic
column data

Inserting new data and updating existing data in a dynamic column is not the same as with
traditional columns. Without some help from a set of special dynamic columns functions,
the standard MariaDB INSERT, UPDATE, and DELETE statements do not understand how to
work with a dynamic column or the data stored in it. They will only see it as a BLOB column.
This recipe introduces and demonstrates the basic functions used when interacting with a
dynamic column.

Getting ready
First, you need to complete the Creating tables with dynamic columns recipe.

Exploring Dynamic and Virtual Columns in MariaDB

172

How to do it...
1.	 Launch the mysql command-line client and connect to the test database in our

MariaDB server.

2.	 Insert some values into the dyn_example table we created earlier:
INSERT INTO dyn_example (dyn_cols) VALUES

 (COLUMN_CREATE('name','t-shirt', 'color','blue'

 AS CHAR, 'size','XL' AS CHAR)),

 (COLUMN_CREATE('name','t-shirt', 'color','blue'

 AS CHAR, 'size','L' AS CHAR)),

 (COLUMN_CREATE('name','t-shirt', 'color','black'

 AS CHAR, 'size','M' AS CHAR)),

 (COLUMN_CREATE('name','flashlight', 'color','black'

 AS CHAR, 'size','AAA' AS CHAR, 'num', 2 AS INT)),

 (COLUMN_CREATE('name','shovel', 'length','5'));

3.	 Update a dynamic column in a single row using the following command:
UPDATE dyn_example SET

 dyn_cols=COLUMN_ADD(dyn_cols, 'name', 'torch')

WHERE COLUMN_GET(dyn_cols, 'name' AS CHAR) = 'flashlight';

4.	 Add a dynamic column to a single row using the following command:
UPDATE dyn_example SET

 dyn_cols=COLUMN_ADD(dyn_cols,'length', 6)

WHERE COLUMN_GET(dyn_cols, 'name' AS CHAR) = 'torch';

5.	 Delete a column from a single row using the following command:
UPDATE dyn_example SET

 dyn_cols=COLUMN_DELETE(dyn_cols,'length')

WHERE COLUMN_GET(dyn_cols, 'name' AS CHAR) = 'shovel';

How it works...
The standard SQL INSERT, UPDATE, and DELETE statements do not work as expected on
a dynamic column. These statements see the dynamic column as a regular BLOB column,
and if we try to insert or update it directly, we will likely end up corrupting the row. To properly
interact with this column, we need to use special dynamic columns functions. The functions
for inserting, updating, and deleting data are COLUMN_CREATE, COLUMN_ADD, and
COLUMN_DELETE.

Chapter 10

173

Each dynamic column in a row can have a different number of columns, and each of these
dynamically defined columns can have the following different data types:

Type Description
BINARY[(N)] A variable-length binary string
CHAR[(N)] A variable-length string
DATE A 3-byte date
DATETIME[(D)] A 9-byte date and time. Microseconds are supported
DECIMAL[(M[,D])] A variable-length binary decimal
INTEGER A variable-length signed integer, up to 64 bits in length
SIGNED [INTEGER] A variable-length signed integer, up to 64 bits in length
TIME[(D)] A 6-byte time. Microseconds are supported and it may be

negative
UNSIGNED [INTEGER] A variable-length unsigned integer, up to 64 bits in length

Defining the data type is optional when creating a new dynamic column or updating an
existing dynamic column, but it is mandatory to specify a data type when reading data
from a dynamic column.

The COLUMN_CREATE function is used as part of an INSERT statement to both add a new row
and to define the dynamic columns in that row. Unlike the COLUMN_ADD and COLUMN_DELETE
functions, where we specify the dynamic columns BLOB column name inside the function, in
the COLUMN_CREATE function, this is taken care of by the INSERT statement this function is
a part of. The syntax of this function is as follows:

COLUMN_CREATE(column_name, value [AS type][, column_name, value
 [AS type]]...);

The COLUMN_ADD function is used as part of an UPDATE statement to either update an
existing dynamic column in one or more existing rows or to add a new column to one or
more existing rows. The syntax of this function is as follows:

COLUMN_ADD(dyncol_blob_name, column_name, value [AS type][,
 column_name, value [AS type]]...);

The COLUMN_DELETE function is used as part of an UPDATE statement to delete the specified
dynamic column or columns. The syntax of this function is as follows:

COLUMN_DELETE(dyncol_blob_name, column_name[, column_name]...);

Exploring Dynamic and Virtual Columns in MariaDB

174

There's more...
The first version of the dynamic columns feature, introduced in MariaDB 5.3, only allowed
for numbered columns. MariaDB 10.0 was the first version of MariaDB to support named
dynamic columns. So, in MariaDB 5.3 and MariaDB 5.5, in the place where we now specify
the column name, we will put a number instead. If we are working with the code that was
developed originally for this first version of dynamic columns, we will see numbers instead
of column names.

MariaDB 10.0 and later supports the old style of dynamic columns only so long as our code
consistently refers to the columns by number. Once we start using names, our dynamic
columns will be automatically upgraded to the new format for dynamic columns and we
will be unable to continue using numbers to refer to our dynamic columns.

Nesting dynamic columns
Dynamic columns can be nested if we put one dynamic column function inside another.
For example, we can perform the following query:

INSERT INTO dyn_example (dyn_cols) VALUES

 (COLUMN_CREATE('type','parent', 'name', 'Mary',

 'child1', COLUMN_CREATE('name', 'Sue', 'eyes','brown'),

 'child2', COLUMN_CREATE('name', 'Bob',

 'grandchild', COLUMN_CREATE('name', 'baby'))

));

This INSERT statement creates a dynamic column with two nested dynamic columns inside
it, one of which has its own nested dynamic column. The names of each column in a dynamic
column have to be unique, but we can duplicate names as long as they are in their own
uniquely-named nested dynamic column.

The Reading nested dynamic columns section of the Reading data from a dynamic
column recipe in this chapter has instructions on how to query and read nested
dynamic column's data.

See also
ff The full documentation of dynamic columns can be found at https://mariadb.

com/kb/en/dynamic-columns/ and https://mariadb.com/kb/en/
dynamic-columns-in-mariadb-10/

ff Refer to the Creating tables with dynamic columns and Reading data from a dynamic
column recipes in this chapter

Chapter 10

175

Reading data from a dynamic column
Reading data from a dynamic column is not the same as with traditional columns. Without
some help from a set of special dynamic columns functions, the standard MariaDB SELECT
statements will not understand how to properly read the data stored in a dynamic columns
BLOB. They will see it as a BLOB column and treat it like any other BLOB. This recipe
introduces and demonstrates the basic functions used when reading a dynamic column.

Getting ready
Complete the Creating tables with dynamic columns recipe and the Inserting, updating,
and deleting dynamic column data recipe in this chapter.

How to do it...
1.	 Launch the mysql command-line client. Connect to our MariaDB server and the

test database.

2.	 Discover the columns in our data:
SELECT id, COLUMN_LIST(dyn_cols) FROM dyn_example;

The following screenshot displays the columns in our data:

Exploring Dynamic and Virtual Columns in MariaDB

176

3.	 Read data from our table using the following commands:
SELECT id,

 COLUMN_GET(dyn_cols, 'name' AS CHAR) AS 'name',

 COLUMN_GET(dyn_cols, 'color' AS CHAR) AS 'color',

 COLUMN_GET(dyn_cols, 'size' AS CHAR) AS 'size',

 COLUMN_GET(dyn_cols, 'num' AS INT) AS 'num'

FROM dyn_example;

The following screenshot displays data selected using the preceding command:

4.	 Select everything from our table and output each dynamic columns BLOB as a JSON
object using the following command:
SELECT id, COLUMN_JSON(dyn_cols) FROM dyn_example;

The preceding command displays the following screenshot:

Chapter 10

177

5.	 Check each dynamic columns BLOB to see if the num column exists in it:
SELECT id, COLUMN_EXISTS(dyn_cols, 'num')

 FROM dyn_example;

The preceding command displays the following screenshot:

6.	 Check that each dynamic columns BLOB columns in each row is valid using the
following command:
SELECT id, COLUMN_CHECK(dyn_cols)

 FROM dyn_example;

The preceding command displays the following screenshot:

Exploring Dynamic and Virtual Columns in MariaDB

178

How it works...
To read dynamic columns, we must use either the COLUMN_GET or COLUMN_JSON helper
functions. If we try to use a standard SELECT statement without using these functions, we
will get data that appears to be garbled. In fact, it is a binary representation of our data that
the dynamic column's API understands and can read but that SELECT, by itself, cannot. This
is similar to how a music program understands how to read a binary MP3 file, but not a file
containing a 3D model of an airplane.

The COLUMN_GET function requires us to specify the name of our dynamic columns BLOB
column along with the name of the dynamic column inside the blob we want to read and
the data type of that dynamic column. This is in contrast to the COLUMN_ADD and COLUMN_
CREATE functions, where defining the data type is optional. Also, we must call this function for
each individual column we want to retrieve, as it does not allow us to specify multiple columns
at once. The syntax of the COLUMN_GET function is as follows:

COLUMN_GET(dyncol_blob_name, column_name AS type);

To discover what columns exist in a given dynamic columns BLOB of a row or of several rows,
we use the COLUMN_LIST function. If we omit the WHERE clause, we will get a list of the
columns in every dynamic columns BLOB for every row in our table. The syntax of this
function is as follows:

COLUMN_LIST(dyncol_blob_name);

The COLUMN_EXISTS function allows us to check if a given column exists in a given dynamic
columns BLOB of a given row or rows (or all rows if we omit a WHERE clause). The function
returns 1 if the column exists, and 0 if it doesn't. The syntax of this function is as follows:

COLUMN_EXISTS(dyncol_blob_name, column_name);

The COLUMN_JSON function allows us to easily grab all of the columns in a dynamic columns
BLOB and output it as a standard JSON object sentence. Because this function outputs all of
the dynamic columns, we do not need to specify or know what columns are in the row or rows
we are selecting. The syntax of this function is as follows:

COLUMN_JSON(dyncol_blob_name);

The COLUMN_CHECK function allows us to verify that a given dynamic columns BLOB is valid
and not corrupted. The syntax of this function is as follows:

COLUMN_CHECK(dyncol_blob_name);

Chapter 10

179

There's more...
The first version of dynamic columns included in MariaDB 5.3 and MariaDB 5.5 did not allow
for column names. Instead, columns were referred to with numbers. These old-style dynamic
columns are still supported in MariaDB 10.0 and above, but the output is slightly different.
For example, the COLUMN_LIST function, if it is used to query one of these old-style
dynamic column's blobs, will return a comma-separated list of column numbers instead
of a comma-separated list of column names.

Reading nested dynamic columns
Nested dynamic columns represent a particular challenge when we want to read the data.
For example, if we input the example nested dynamic columns as demonstrated in the
Nesting dynamic columns section of the Inserting, updating, and deleting dynamic column
data recipe, and if we try to get the data using the COLUMN_GET function as follows, our
output result will appear garbled:

SELECT

 COLUMN_GET(dyn_cols, 'child1' AS CHAR) as 'child1',

 COLUMN_GET(dyn_cols, 'child2' AS CHAR) as 'child2'

FROM dyn_example WHERE

 COLUMN_GET(dyn_cols, 'type' AS CHAR) = 'parent';

The output result will appear as shown in the following screenshot:

Instead, we must use the COLUMN_JSON function to properly select the nested dynamic
columns data, using the following command:

SELECT COLUMN_JSON(dyn_cols)

FROM dyn_example WHERE

 COLUMN_GET(dyn_cols, 'type' AS CHAR) = 'parent';

Exploring Dynamic and Virtual Columns in MariaDB

180

The preceding command displays the output shown in the following screenshot:

See also
ff The full documentation of dynamic columns can be found at https://mariadb.

com/kb/en/dynamic-columns/ and https://mariadb.com/kb/en/
dynamic-columns-in-mariadb-10/

ff Refer to the Creating tables with dynamic columns and Inserting, updating, and
deleting dynamic column data recipes in this chapter

Using virtual columns
The virtual columns feature of MariaDB allows us to create columns which contain
precalculated or calculated on-the-fly values.

How to do it...
1.	 Launch the mysql command-line client and connect to our MariaDB database.

2.	 Create a test database and switch to that database using the following command:
CREATE DATABASE IF NOT EXISTS test;

USE test;

3.	 Create a table with virtual columns using the following command:
CREATE TABLE virt_cols (

 id SERIAL PRIMARY KEY,

 surname VARCHAR(64),

 givenname VARCHAR(64),

 uid INT AS (id + 1000) VIRTUAL,

 username VARCHAR(6) AS

 (LOWER(CONCAT(LEFT(givenname,1),(LEFT(surname,5)))))
 PERSISTENT);

Chapter 10

181

4.	 Examine the structure of the table using the following command:
DESCRIBE virt_cols;

The DESCRIBE command displays the structure of the table as shown in the
following screenshot:

5.	 Show a CREATE TABLE command that will recreate the exact table (including the
virtual columns):
SHOW CREATE TABLE virt_cols\G

The preceding command displays the following output:

Exploring Dynamic and Virtual Columns in MariaDB

182

6.	 Insert some data as follows:
INSERT INTO virt_cols (surname,givenname) VALUES

 ('Packer','Boyd'),('Uchtdorf','Dieter'),

 ('Ballard','Russell'),('Holland','Jeffrey'),

 ('Cook','Quentin'),('Bednar','David');

INSERT INTO virt_cols (surname,givenname,uid,username) VALUES

 ('Christofferson','Todd', DEFAULT, DEFAULT),

 ('Andersen','Neil', DEFAULT, DEFAULT);

7.	 Select the data from our virt_cols table using the following command:
SELECT * FROM virt_cols;

The preceding command displays the following output:

How it works...
The virtual columns feature of MariaDB allows us to create special columns in our table that
have calculated values based on the output of a function (or a combination of functions).
These values can be either PERSISTENT, meaning the value is stored in the database and
only updated when the row is updated, or VIRTUAL, meaning the value is calculated each
time the row is read.

Chapter 10

183

When using a standard DESCRIBE statement to examine the structure of a table with virtual
columns, the EXTRA column in the output will tell us whether a column is virtual or not with
the presence of the text VIRTUAL or PERSISTENT to identify each type of virtual column.
What the DESCRIBE statement will not do is show us the function or combination of functions
and operators which determine the value of the virtual column. For that, we need to use the
SHOW CREATE TABLE command.

When inserting or updating data in a table with virtual columns, we can either choose to
not specify the columns in our SQL statement or to go ahead and specify them but use the
DEFAULT key word instead of providing a value. In our recipe, we perform both actions.

Selecting data from a table with virtual columns is just like selecting from a table without
virtual columns. The only difference will be if the function calculating the value of a VIRTUAL
column takes a noticeable amount of time to run. A PERSISTENT virtual column, because its
calculated value is stored in the database, will return results as fast as regular columns in the
table, but a VIRTUAL column's value is calculated every time the table is queried.

There's more...
Virtual columns have some limitations. For starters, they can only be used with InnoDB,
XtraDB, Aria, and MyISAM tables.

Also, indexes are only partially supported for virtual columns. This is because virtual columns
do not support primary keys. It is possible to have an index on a PERSISTENT virtual column,
but even then statements such as UPDATE CASCADE, ON UPDATE SET NULL, and ON
DELETE SET NULL are not allowed.

That said, things such as triggers and stored procedures are fully supported by virtual columns.

See also
ff The full documentation of virtual columns in MariaDB is available at

https://mariadb.com/kb/en/virtual-columns/

11
NoSQL with

HandlerSocket

In this chapter, we will cover the following recipes:

ff Installing and configuring HandlerSocket

ff Installing the libhsclient library

ff Installing the HandlerSocket PERL client libraries

ff Reading data using HandlerSocket and PERL

ff Inserting data using HandlerSocket and PERL

ff Updating and deleting data using HandlerSocket and PERL

ff Installing the HandlerSocket Python client libraries

ff Reading data using HandlerSocket and Python

ff Inserting data using HandlerSocket and Python

ff Updating and deleting data using HandlerSocket and Python

ff Installing the HandlerSocket Ruby client libraries

ff Reading data using HandlerSocket and Ruby

ff Inserting data using HandlerSocket and Ruby

ff Updating and deleting data using HandlerSocket and Ruby

ff Using HandlerSocket directly with Telnet

NoSQL with HandlerSocket

186

Introduction
This chapter is all about installing, configuring, and most importantly, using HandlerSocket,
a NoSQL interface for MariaDB. We'll start with installing and configuring the HandlerSocket
plugin for MariaDB and compiling and installing the libhsclient library that other
languages use to talk directly to our MariaDB databases through HandlerSocket.

We then go through the same basic recipes for three popular scripting languages:
PERL, Python, and Ruby. For each of these three languages, we first install the
client library, and then go through reading, inserting, updating, and deleting
data. After installing the HandlerSocket plugin, feel free to jump directly to a
preferred language. To finish off the chapter, we have a recipe on interacting
with HandlerSocket directly using telnet.

Installing and configuring HandlerSocket
The HandlerSocket plugin is included with MariaDB, but like other optional plugins, it is not
enabled or configured by default.

How to do it...
1.	 Launch the mysql command-line client and connect to our MariaDB database.

2.	 Install the HandlerSocket plugin using the following command:
INSTALL SONAME 'handlersocket';

3.	 Open our my.cnf or my.ini file and add the following command to the
[mysqld] section:

* HandlerSocket

handlersocket_address="127.0.0.1"

handlersocket_port="9998"

handlersocket_port_wr="9999"

Chapter 11

187

4.	 Stop and restart MariaDB.

5.	 Reconnect to MariaDB using the mysql command-line client and see the
HandlerSocket worker threads using the following statement:
SHOW PROCESSLIST;

How it works...
The HandlerSocket plugin allows us to completely bypass the SQL layer of MariaDB. This
offers an incredible speed for simple operations. The downside is that HandlerSocket only
handles simple operations. It cannot handle anything beyond the basic SELECT, INSERT,
UPDATE, and DELETE statements, and it can only search on a primary or other indexed key.

The HandlerSocket plugin is included with MariaDB, but like other optional plugins, it is
not activated by default. To activate it, we use the INSTALL SONAME command. This is a
one-time operation.

After running the INSTALL command, there are a few settings we need to add to our
local my.cnf file in order for HandlerSocket to work properly. So, after installing the
plugin, we edit our main configuration file and add it.

The handlersocket_address setting is the IP address that the plugin will listen on for
requests. The handlersocket_port variable sets the port number we connect to for
read-only requests. The handlersocket_port_wr variable defines the port number
we connect to for inserts, updates, and other operations that require write access.

When installing and configuring HandlerSocket, we need to make sure that
we run the INSTALL SONAME command before adding the settings to our
my.cnf file. The HandlerSocket configuration options are only valid if the
plugin is installed. They will cause an error and prevent MariaDB from starting
if they are present in our configuration file when the HandlerSocket plugin is
not installed.

NoSQL with HandlerSocket

188

When HandlerSocket is configured and running, it will spawn several worker threads. These
threads handle requests from our applications. While HandlerSocket is running, looking for the
worker threads is a good way to verify that we have installed and configured HandlerSocket
correctly. When HandlerSocket is running, the output of the SHOW PROCESSLIST; command
will look similar to the following screenshot:

To remove the HandlerSocket plugin, we use the UNINSTALL SONAME command. If we
choose to UNINSTALL the plugin, we must also remove the configuration settings we added
after installing the plugin.

There's more...
By default, the HandlerSocket plugin will launch 16 read threads and 1 write thread. Both of
them can be controlled by adding the following variables to the [mysqld] section of our main
my.cnf file:

HandlerSocket Read Threads:

handlersocket_threads = 16

HandlerSocket Write Threads:

handlersocket_threads_wr = 1

The maximum permissible value for each of them is 3000, but it's not recommended to ever
set them that high. In fact, the developers recommend leaving the number of write threads
set to 1. For the read threads, they recommend setting it to double the number of CPU cores
on the server.

Chapter 11

189

We can also set plain text passwords for clients to use when connecting with HandlerSocket.
Along with completely bypassing the SQL layer of MariaDB, HandlerSocket also bypasses
MariaDB's security layer. This adds back a measure of security that is otherwise missing when
using this plugin. We can set separate passwords for both the read-only and write ports. The
two variables are as follows:

handlersocket_plain_secret = 'readSocketPassword'

handlersocket_plain_secret_wr = 'writeSocketPassword'

See also
ff The full documentation of the HandlerSocket plugin can be found at

https://mariadb.com/kb/en/handlersocket/

ff The various HandlerSocket configuration options are documented at
https://mariadb.com/kb/en/handlersocket-configuration-options/

ff The HandlerSocket protocol is documented at https://github.com/DeNA/
HandlerSocket-Plugin-for-MySQL/blob/master/docs-en/protocol.
en.txt

Installing the libhsclient library
The libhsclient library is what client libraries use to talk to HandlerSocket. This library
is not included with MariaDB; so, we need to either install it from our Linux distribution's
package repositories or build and install it ourselves.

Getting ready
Install and configure the HandlerSocket plugin as described in the Installing and configuring
HandlerSocket recipe earlier in this chapter. In order to build the libhsclient library, we need
to have some development tools and packages installed.

On Red Hat, Fedora, or CentOS, run the following command to install the
necessary tools:

sudo yum install make gcc-c++

On Debian or Ubuntu, run the following command to install the necessary tools:

sudo apt-get install make g++

We are now ready to build and install the libhsclient libraries.

NoSQL with HandlerSocket

190

How to do it...
1.	 Download the latest HandlerSocket source file as follows:

wget \

https://github.com/DeNA/HandlerSocket-Plugin-for-MySQL/archive/
master.tar.gz

2.	 Change to the /usr/local/src directory and untar the file we just downloaded
as follows:
cd /usr/local/src/

sudo tar -zxvf /path/to/master*

3.	 Change to the libhsclient/ directory and rename Makefile.plain to
Makefile as follows:
cd HandlerSocket-Plugin-for-MySQL-master/libhsclient

sudo mv -vi Makefile.plain Makefile

4.	 Compile libhsclient and install it as follows:
sudo make

sudo mkdir -vp /usr/local/include/handlersocket

sudo install -vm 644 *.hpp /usr/local/include/handlersocket

sudo install -vm 644 libhsclient.a /usr/local/lib

cd /usr/local/include/

sudo ln -vs handlersocket/*.hpp ./

How it works...
Compiling and installing the libhsclient library is much like compiling and installing other
software from a source on Linux. The main difference is that because it is part of the larger
HandlerSocket plugin source package and because we don't need the MariaDB plugin parts
(they are already in MariaDB), we don't use the usual ./configure && make && sudo
make install three-step dance that is so common with the other source code. Instead, we
navigate directly to the libhsclient/ subdirectory, put the default Makefile in place, and
use the make process.

The library is not very large, so the make process does not take long. When the process is
completed, we will have several files that end in .hpp in the libhsclient/ directory. These
files need to be moved to a location from where our client libraries can see them, so that's
what we do in the last few commands we run in step 4.

Chapter 11

191

Installing the HandlerSocket PERL client
libraries

The HandlerSocket client libraries for PERL are included with the HandlerSocket source code.
In this recipe, we'll compile and install them.

Getting ready
In order to build the HandlerSocket PERL client library, we need to install some development
tools and packages. First, we need to install the libhsclient library as described in the
Installing the libhsclient library recipe earlier in this chapter. Then, we need to install some
PERL development tools.

On Red Hat, Fedora, or CentOS, run the following command:

sudo yum install perl-devel perl-Test-Simple

On Debian or Ubuntu, run the following command to install the necessary packages:

sudo apt-get install libperl-dev

We are now ready to install the HandlerSocket PERL client library.

How to do it...
1.	 Open a command-line window.

2.	 Change to the perl-Net-HandlerSocket directory in the HandlerSocket source
directory as follows:
cd /usr/local/src/HandlerSocket-Plugin-for-MySQL-master/

cd perl-Net-HandlerSocket/

3.	 Run the following commands to install the PERL HandlerSocket
client libraries:
sudo perl Makefile.PL

sudo make

sudo make test

sudo make install

NoSQL with HandlerSocket

192

How it works...
The HandlerSocket plugin source code includes a PERL client library, but this library is
not included with MariaDB binaries, so we have to install it manually. We already had the
HandlerSocket source code from the recipe we followed to install the libhsclient library,
so we don't have to download it again.

Actually, compiling and installing the library is extremely easy. When the make test portion
is run, the following text should be the last line of the output:

Result: PASS

Reading data using HandlerSocket and PERL
In this recipe, we will create a simple PERL script that reads data using HandlerSocket.

Getting ready
Install the HandlerSocket PERL client libraries as described in the Installing the
HandlerSocket PERL client libraries recipe earlier in this chapter.

Launch the mysql command-line client and run the following commands to create a test table
with some data:

CREATE DATABASE IF NOT EXISTS test;

USE test;

DROP TABLE IF EXISTS hs_test;

CREATE TABLE hs_test (

 id SERIAL PRIMARY KEY,

 givenname varchar(64),

 surname varchar(64)

);

INSERT INTO hs_test VALUES

 (1,"William","Hartnell"), (2,"Patrick","Troughton"),

 (3,"John","Pertwee"), (4,"Tom","Baker"),

 (5,"Peter","Davison"), (6,"Colin","Baker");

This sample data is also in the hs_sample_data.sql file available on the
book's website.

Chapter 11

193

How to do it...
1.	 Create a file named hs_read_test.pl with the following content:

#!/usr/bin/perl

use strict;

use warnings;

use Net::HandlerSocket;

my $read_args = { host => 'localhost', port => 9998 };

my $hs = new Net::HandlerSocket($read_args);

my $res = $hs->open_index(0, 'test', 'hs_test', 'PRIMARY',
'id,givenname,surname');

 die $hs->get_error() if $res != 0;

my $pk = 1;

$res = $hs->execute_single(0, '=', ["$pk"], 10, 0);

 die $hs->get_error() if $res->[0] != 0;

shift(@$res);

while ($res->[0]) {

 printf("%s\t%s\t%s\n",$res->[0],$res->[1],$res->[2]);

 $pk++;

 $res = $hs->execute_single(0, '=', ["$pk"], 20, 0);

 die $hs->get_error() if $res->[0] != 0;

 shift(@$res);

}

$hs->close();

2.	 Run the file with the following command:
perl hs_read_test.pl

This file is also available on the book's website.

NoSQL with HandlerSocket

194

How it works...
To read data using the HandlerSocket PERL library, we first need to create
a Net::HandlerSocket object. This is done in our recipe with the use
Net::HandlerSocket line and the two lines following it, where we supply
the host and port information.

With the object now created, we can open a connection to a specific table using the
open_index method. When doing so, we give our connection a number (0 in our recipe)
and then specify the database we want to access (test), the table (hs_test), the
index we want to open (we use PRIMARY in our recipe, which is a key word that means
the primary key), and finally, a comma-separated list of the columns we want to read
(id,givenname,surname).

To execute a single read, we use the execute_single method. This method takes five
arguments. The first is the connection number (0) we set when calling the open_index
method. The second is the search operator (= in our recipe). Supported operators include =,
>=, <=, >, and <. The third argument is an array of the key we want to find. The array must
have the same number of elements as the number of columns the key we are searching has.
As we are searching the primary key in our recipe and it only has a single column, our array
only has one element. The fourth and fifth arguments are the maximum number of records to
retrieve and the number of columns to skip before retrieving anything, respectively (10 and 0
in our recipe).

The result we get back is an array with elements corresponding to the columns we defined
with our open_index call. In our recipe, we use printf to print them to our terminal.

To cycle through all of the records in our test database, we use a while loop to increment our
$pk variable until it doesn't find a record.

Lastly, we call the close method to close our connection. The output of this script will look
like the following screenshot:

Chapter 11

195

There's more...
We can execute multiple queries in a single operation using the execute_multi method.
Instead of a single set of arguments, this method accepts an array of arguments. Each entry
in the array contains the same five arguments used in the execute_single method. For
example, consider the following statements:

my $mres = $hs->execute_multi([

 [0, '=', ["1"], 1, 0],

 [0, '>', ["3"], 5, 0],

 [0, '>=', ["5"], 2, 0],

 [0, '<', ["6"], 4, 3]

]);

As we are dealing with multiple requests, error handling goes in a for loop as follows:

for my $res (@$mres) {

 die $hs->get_error() if $res->[0] != 0;

 shift(@$res);

 # and etc...

}

See also
ff The documentation for the PERL client library is available at https://github.

com/DeNA/HandlerSocket-Plugin-for-MySQL/blob/master/docs-en/
perl-client.en.txt

Inserting data using HandlerSocket and
PERL

To insert data with HandlerSocket, we need to use a different port, but we still use the
execute_single command with extra options.

Getting ready
Complete the Reading data using HandlerSocket and PERL recipe before starting
this recipe.

NoSQL with HandlerSocket

196

How to do it...
1.	 Create a file named hs_insert_test.pl with the following content (this script is

also available on the book's website):
#!/usr/bin/perl

use strict;

use warnings;

use Net::HandlerSocket;

my $write_args = { host => 'localhost', port => 9999 };

my $hsw = new Net::HandlerSocket($write_args);

my $resw = $hsw->open_index(1, 'test', 'hs_test', 'PRIMARY',
'id,givenname,surname');

 die $hsw->get_error() if $resw != 0;

$resw = $hsw->execute_single(1, '+', ['7', 'Sylvester', 'McCoy'
],0,0);

 die $hsw->get_error() if $resw->[0] != 0;

$resw = $hsw->execute_single(1, '+', ['8', 'Paul', 'McGann'
],0,0);

 die $hsw->get_error() if $resw->[0] != 0;

$hsw->close();

2.	 Run the file using the following command:
perl hs_insert_test.pl

3.	 Run the hs_read_test.pl script to verify that our inserts worked:
perl hs_read_test.pl

How it works...
Creating the Net::HandlerSocket object and opening a connection are very similar to how
we open a read-only connection. The main difference is that we specify the write port (9999)
instead of the read-only port (9998). Opening an index is also the same as what we do for a
read-only connection.

Chapter 11

197

Performing an insert is different. We do use the same execute_single method, but
instead of using a comparison operator, like we would for reading data, we use a + operator
to indicate that we are adding a new row.

The third argument of the execute_single method is also different. Instead of specifying
what we are searching for, we put in the data we are inserting. These values correspond to
the columns we specified in the open_index call. The fourth and fifth arguments of the
execute_single method are not used when inserting and so, both can be set to 0.

The hs_insert_test.pl script will not produce any output, so after running it, we can
rerun the hs_read_test.pl script we created in the Reading data using HandlerSocket
and PERL recipe. Thus, we can confirm the data was entered. The output will look like the
following screenshot:

See also
The documentation for the PERL client library is available at https://github.com/DeNA/
HandlerSocket-Plugin-for-MySQL/blob/master/docs-en/perl-client.en.txt

Updating and deleting data using
HandlerSocket and PERL

In addition to reading and inserting data, updating and deleting data round out the abilities of
HandlerSocket.

Getting ready
Complete the Inserting data using HandlerSocket and PERL recipe before starting this recipe.

NoSQL with HandlerSocket

198

How to do it...
1.	 Create a file named hs_update_test.pl with the following content (this script is

also available on the book's website):
#!/usr/bin/perl

use strict;

use warnings;

use Net::HandlerSocket;

my $update_args = { host => 'localhost', port => 9999 };

my $hsu = new Net::HandlerSocket($update_args);

my $resu = $hsu->open_index(2, 'test', 'hs_test', 'PRIMARY',
'givenname');

 die $hsu->get_error() if $resu != 0;

$resu = $hsu->execute_single(2, '=', ['3'],1,0, 'U', ['Jon']);

 die $hsu->get_error() if $resu->[0] != 0;

printf("Number of Updated Rows:\t%s\n",$resu->[1]);

$hsu->close();

2.	 Create a file called hs_delete_test.pl with the following contents (this script is
also available on the book's website):
#!/usr/bin/perl

use strict;

use warnings;

use Net::HandlerSocket;

my $delete_args = { host => 'localhost', port => 9999 };

my $hsd = new Net::HandlerSocket($delete_args);

my $resd = $hsd->open_index(3, 'test', 'hs_test', 'PRIMARY',
'id,givenname,surname');

 die $hsd->get_error() if $resd != 0;

$resd = $hsd->execute_single(3, '+', ['101', 'Junk', 'Entry'
],1,0);

Chapter 11

199

 die $hsd->get_error() if $resd->[0] != 0;

$resd = $hsd->execute_single(3, '+', ['102', 'Junk', 'Entry'
],1,0);

 die $hsd->get_error() if $resd->[0] != 0;

$resd = $hsd->execute_single(3, '+', ['103', 'Junk', 'Entry'
],1,0);

 die $hsd->get_error() if $resd->[0] != 0;

$resd = $hsd->execute_single(3, '>', ['100'],10,0, 'D');

 die $hsd->get_error() if $resd->[0] != 0;

printf("Number of Deleted Rows:\t%s\n",$resd->[1]);

$hsd->close();

3.	 Run the files with the following commands:
perl hs_update_test.pl

perl hs_delete_test.pl

4.	 Run the hs_read_test.pl script to verify that our update and delete commands
have worked:
perl hs_read_test.pl

How it works...
To update and delete data, we use the execute_single method but with extra arguments.
To update data, there are two extra arguments. The first five are just like the ones used for
reading a row. The sixth argument is the letter U that stands for update. The seventh argument
contains the values we want to update. These must correspond to the columns we specify in
the open_index call.

In our recipe, we specified just the givenname column, so that's the only value we need to
provide. Our recipe searches for the primary key 3 and then updates the givenname column
of the row with that key to Jon, which is how his given name is actually spelled.

Lastly, in our update script, the result we get back from the execute_single method is the
number of rows updated. So, to make things more user friendly, we print the value out. The
output should be as follows:

Number of Updated Rows: 1

NoSQL with HandlerSocket

200

In our delete script, the calls are simpler than what we used to update data, but we first insert
some data to give us something to delete (this lets us run the script multiple times, and it will
always have those three rows to delete).

After inserting the three junk rows, we call execute_single with D (for delete) and with a
comparison operator (>) and a record limit of 10 that lets us delete the records we just added.
When we run the statement, the output will be as follows:

Number of Deleted Rows: 3

Finally, we run the hs_read_test.pl script we created in the Reading data using
HandlerSocket and PERL recipe, so we can confirm that the given name was correctly
updated (the deleted rows, obviously, will not appear in the output unless something
went wrong).

The output will look like the following screenshot:

See also
ff The documentation for the PERL client library is available at https://github.

com/DeNA/HandlerSocket-Plugin-for-MySQL/blob/master/docs-en/
perl-client.en.txt

Installing the HandlerSocket Python client
libraries

Python is another popular scripting language. This recipe is about installing the Python pyhs
client library for HandlerSocket so that we can use it in our scripts.

Chapter 11

201

Getting ready
Install the libhsclient library as described in the Installing the libhsclient library recipe
earlier in this chapter.

We need to also install the mercurial and python-setuptools packages so that we can
get the latest copy of the pyhs source code and install it.

On Red Hat, Fedora, or CentOS, run the following command:

sudo yum install mercurial python-setuptools

On Debian or Ubuntu, run the following command:

sudo apt-get install mercurial python-setuptools

We are now ready to install the HandlerSocket client libraries for Python.

How to do it...
1.	 Clone a copy of the pyhs source code as follows:

cd /usr/local/src/

sudo hg clone http://bitbucket.org/excieve/pyhs

2.	 Change to the pyhs directory and edit the setup.py file by adding the following line
after the four from... and DistutilsPlatformError lines at the top of the file:
ext_errors = (CCompilerError, DistutilsExecError,
DistutilsPlatformError)

3.	 Run the setup.py script to install pyhs as follows:
sudo python setup.py install

How it works...
There are a couple of different HandlerSocket libraries for the Python language. The one
we're installing is called pyhs. Its source code is hosted on bitbucket.org and uses
mercurial for version control. The actual process of checking out and installing the library is
quite simple. However, there's a bug in the file that requires a quick fix before we can actually
complete the install. The bug is described at https://bitbucket.org/excieve/pyhs/
issue/11/setuppy-error-ext_errors-not-defined and may actually be fixed in the
current version of pyhs, so we should check before applying the fix described here.

If everything goes well, the last line of the output of the install step will be as follows:

Success

NoSQL with HandlerSocket

202

See also
ff The documentation of the pyhs library is available at

http://python-handler-socket.readthedocs.org/en/latest/

Reading data using HandlerSocket and
Python

Now that we have installed pyhs, we can start using it to read data from our database.

Getting ready
Install the HandlerSocket PERL client libraries as described in the Installing the
HandlerSocket PERL client libraries recipe earlier in this chapter. Launch the mysql
command-line client and run the SQL commands from the Getting ready section of the
Reading data using HandlerSocket and PERL recipe, described earlier in this chapter, to give
us some sample data to read (and if we've already gone through the PERL or Ruby recipes,
running the SQL commands again will reset the sample data to its default state).

How to do it...
1.	 Launch the interactive Python interpreter in a terminal window as follows:

python

2.	 Run the following commands in the interpreter:
from pyhs import Manager
hs = Manager()
data = hs.get('test', 'hs_test', ['id', 'givenname', 'surname'],
'5')
print dict(data)

3.	 Then, run the following commands in the interpreter:
from pyhs.sockets import ReadSocket
hsr = ReadSocket([('inet', '127.0.0.1', 9998)])

r_id = hsr.get_index_id('test', 'hs_test', ['id', 'givenname',
'surname'])

hsr.find(r_id, '=', ['5'])
hsr.find(r_id, '=', ['6'])
hsr.find(r_id, '>=', ['1'],20)

4.	 Press Ctrl + D to exit the interactive Python interpreter.

Chapter 11

203

How it works...
The pyhs libraries provide us with both high- and low-level methods of getting data. In our
recipe, we used the high-level method first.

We start by importing the high-level Manager object. We then assign it to a variable and use
the get method to search for a row in our database. This method takes four arguments. First,
the name of the database, then the table name, an array of the columns we want to get, and
lastly, the primary key value we want to search for (5 in our recipe). We assign the result to
a variable and then print it out to our screen with print dict(). The output of the print
dict(data) line will look like the following command:

{'givenname': 'Peter', 'surname': 'Davison', 'id': '5'}

Next, we import the lower level ReadSocket object. With the Manager object we can simply
request what we want and get it all in one step, but we can't do that with ReadSocket.
Instead, with ReadSocket, we first open a connection to the HandlerSocket read-only port,
then we call the get_index_id method to define the database, table, and columns we
are interested in. This method takes three arguments: the database name, the table name,
and an array of the columns we are interested in.

We are then able to read data using the find method. This method takes three arguments.
First is the variable we used when calling get_index_id. Second is the comparison operator
we want to use; the supported operators are =, >, <, >=, and <=. The third argument is the key
value we want to search for. There are fourth and fifth arguments that are optional. They set
the maximum number of rows to return and the number of records to skip before retrieving
records. If these arguments are not specified, the find method will set them both to 0.

The results of the find method are returned as an array. Of the three calls to this method in
our recipe, the first two return single rows and the last returns all of the records in our example
table. The returned values in the Python interpreter will look like the following command:

[('5', 'Peter', 'Davison')]

[('6', 'Colin', 'Baker')]

[('1', 'William', 'Hartnell'), ('2', 'Patrick', 'Troughton'), ('3',
'John', 'Pertwee'), ('4', 'Tom', 'Baker'), ('5', 'Peter', 'Davison'),
('6', 'Colin', 'Baker')]

NoSQL with HandlerSocket

204

The complete output of the recipe will look like the following screenshot:

See also
ff The documentation of the pyhs library is available at

http://python-handler-socket.readthedocs.org/en/latest/

Inserting data using HandlerSocket and
Python

Inserting data using Python is similar to how it is done in other languages, but with a bit of
Python flair.

Getting ready
Complete the Reading data using HandlerSocket and Python recipe, described earlier in this
chapter, prior to starting this recipe.

Chapter 11

205

How to do it...
1.	 Launch the interactive Python interpreter in a terminal window as follows:

python

2.	 Then, run the following commands in the Python interpreter:
from pyhs import Manager

hs = Manager()

hs.insert('test', 'hs_test', [('id', '7'), ('givenname',
'Sylvester'), ('surname', 'McCoy')])

3.	 Finally, run the following commands in the interpreter:
from pyhs.sockets import WriteSocket

hsw = WriteSocket([('inet', '127.0.0.1', 9999)])

w_id = hsw.get_index_id('test', 'hs_test', ['id', 'givenname',
'surname'])

hsw.insert(w_id, ['8','Paul','McGann'])

How it works...
Similar to how data was read, when inserting data with pyhs there are two ways to do it.
First is at a high level using the Manager object, and the second is at a low-level using the
WriteSocket object.

The Manager object's insert method takes three arguments. First, we set the database
name and then the table name. Finally, we provide an array that contains the column names
and the values we want to insert.

For the WriteSocket object, we first open a connection to the HandlerSocket write port
and then call the get_index_id method to define the database, table, and columns we
want to insert.

We are then able to insert data using the insert method. This method takes two arguments.
First is the variable we used when calling get_index_id (we used w_id in our recipe), and
the second is an array of the values we want to insert. After successful insertion, the insert
method will return True.

The WriteSocket object doesn't have a find method, so if we want to read back the data
we just entered, we need to use the ReadSocket object as described in the Reading data
using HandlerSocket and Python recipe earlier in this chapter.

NoSQL with HandlerSocket

206

The output of the commands run in this recipe will look like the following screenshot:

See also
ff The documentation of the pyhs library is available at

http://python-handler-socket.readthedocs.org/en/latest/

Updating and deleting data using
HandlerSocket and Python

Updating and deleting data is similar to but not quite the same as inserting data.

Getting ready
Complete the Inserting data using HandlerSocket and Python recipe prior to starting this recipe.

How to do it...
1.	 Launch the interactive Python interpreter in a terminal window as follows:

python

2.	 Run the following commands in the Python interpreter:
from pyhs.sockets import WriteSocket

hsu = WriteSocket([('inet', '127.0.0.1', 9999)])

u_id = hsu.get_index_id('test', 'hs_test', ['givenname'])

hsu.find_modify(u_id, '=', ['3'],'U',['Jon'],10,0)

Chapter 11

207

3.	 Then, run the following commands in the Python interpreter to open new read and
write connections to our test table:
from pyhs.sockets import ReadSocket

hsr = ReadSocket([('inet', '127.0.0.1', 9998)])

r_id = hsr.get_index_id('test', 'hs_test', ['id', 'givenname',
'surname'])

from pyhs.sockets import WriteSocket

hsd = WriteSocket([('inet', '127.0.0.1', 9999)])

d_id = hsd.get_index_id('test', 'hs_test', ['id', 'givenname',
'surname'])

4.	 Run the following commands to test the process of deleting data:
hsr.find(r_id, '>=', ['1'],20)

hsd.insert(d_id, ['101','Junk','Entry'])

hsd.insert(d_id, ['102','Junk','Entry'])

hsd.insert(d_id, ['103','Junk','Entry'])

hsr.find(r_id, '>=', ['1'],20)

hsd.find_modify(d_id, '>', ['100'],'D','',10)

hsr.find(r_id, '>=', ['1'],20)

How it works...
To update data, we use the WriteSocket object of the pyhs library. First, we open a
connection to the HandlerSocket write port, and then we call the get_index_id method to
define the database, table, and columns we want to update. In step 2 of our recipe, we're only
updating the givenname column, so that's all we define.

We update data using the find_modify method. This method takes seven arguments.
First is the variable we used when calling get_index_id (we used u_id in our recipe), and
the second is the comparison operator we want to use for finding the values to update; the
supported operators are =, >, <, >=, and <=. The third argument is the key value we want to
search for (3 in our recipe). The fourth argument is the character U that tells the method that
we are performing an update. Fifth, is an array of the values we want to update. This array
corresponds to the columns we specified when we called the get_index_id method; just
fill the givenname column in our recipe. The sixth and seventh arguments set the maximum
number of rows to update and the number of records to skip before searching records,
respectively. We set these to 10 and 0 in our recipe, respectively.

NoSQL with HandlerSocket

208

On a successful update, the find_modify method will return the number of rows updated as
an array. The returned value in the Python interpreter will look like the following command:

[('1',)]

The complete output of the recipe will look like the following screenshot:

The WriteSocket object doesn't have a find method, so if we want to read back the row we
just updated, we need to use the ReadSocket object as described in the Reading data using
HandlerSocket and Python recipe earlier in this chapter.

To test the process of deleting data in steps 3 and 4 of our recipe, we first import the
ReadSocket object in step 3 like we did in the Reading data using HandlerSocket and
Python recipe earlier in this chapter, so we can easily read the data to show the before and
after states of our table. We then open a new WriteSocket object, this time defining all of
the columns in our table instead of just the givenname column.

Then, in step 4 of our recipe, we actually test the code by inserting some data, deleting it, and
reading the data in our table before and after each step. When deleting rows in our recipe,
we supply the find_modify method with six arguments. First is the variable we used when
calling get_index_id (we used d_id in our recipe), and the second is the comparison
operator we want to use for finding the rows to delete (> in our recipe). The third argument is
the key value we want to search for (100 in our recipe). The fourth argument is the character
D, which tells the method that we are performing a delete operation. The fifth argument of the
find_modify method is an array of the values we want to update; this is only used when
updating a row, which we aren't doing here, so we supply an empty value. We do this so that
we can specify the sixth argument, which is the limit of the number of rows we want to modify.
We do this because if this value is not specified, the method will default to only deleting a
single row. In our recipe, we want to delete all rows with id greater than 100, so we set this
to 10 (we could set it to 3 since there are only three that match, but in cases where we don't
know the exact number of rows we are deleting and we want to make sure we delete them all,
it's better to set this value to a larger value than we need to). The result we get back will be an
array containing a single value equal to the number of rows deleted.

Chapter 11

209

In our recipe, we print out our data in our example table twice; once before the deletion and
then again after it. The key output is in between when the find_modify method returns the
number of rows deleted. In our recipe, the output will be the following command:

[('3',)]

The complete output of steps 3 and 4 will look like the following screenshot:

See also
ff The documentation of the pyhs library is available at

http://python-handler-socket.readthedocs.org/en/latest/

NoSQL with HandlerSocket

210

Installing the HandlerSocket Ruby client
libraries

Ruby is the last language in our trio of scripting languages compatible with HandlerSocket in
this chapter. Installing and using this library is easy.

Getting ready
Install the libhsclient library as described in the Installing the libhsclient library recipe
earlier in this chapter. In order to build the HandlerSocket Ruby client libraries, we need to
install some development tools and packages.

On Red Hat, Fedora, or CentOS, run the following command:

sudo yum install ruby-irb rubygems ruby-rdoc ruby-devel

On Debian or Ubuntu, run the following command:

sudo apt-get install irb rubygems rdoc ruby-dev

We are now ready to install the HandlerSocket Ruby client libraries.

How to do it...
1.	 Use rubygems to install the handlersocket gem in a terminal window, as follows:

sudo gem install 'handlersocket'

2.	 Launch the irb interactive Ruby interpreter and check that the handlersocket
library loads as follows:
irb

require 'rubygems'

require 'handlersocket'

How it works...
The RubyGems package manager makes installing the HandlerSocket Ruby library easy. To
test that the library is correctly installed, we just need to launch the irb interactive Ruby
interpreter and try to run the require handlersocket command. If the library loads
correctly, the interpreter will return the following output:

=> true

Chapter 11

211

There's more...
On some systems, the require 'rubygems' line is not needed. If it is not required, the
command will return false and the require 'handlersocket' line will still return
true. So, if we want, we can just ignore the harmless false report or omit the require
'rubygems' line altogether. When the require 'rubygems' line is required, irb
will complain that it cannot find the handlersocket library. Once we run the require
command on the rubygems library, the handlersocket library can be found. The output
of this recipe on Ubuntu and Debian will look like the following screenshot:

See also
ff The source code of the Ruby handlersocket library, along with examples, can be

found at https://github.com/miyucy/handlersocket

Reading data using HandlerSocket and Ruby
In some ways, using the Ruby HandlerSocket client library is very similar to using the Python
HandlerSocket client library described earlier in this chapter. This is mainly true in the
commands we send to HandlerSocket, but there are differences that can trip us up if
we're not careful.

Getting ready
Install the HandlerSocket Ruby client libraries as described in the Installing the HandlerSocket
Ruby client libraries recipe earlier in this chapter. Launch the mysql command-line client
and run the SQL commands from the Getting ready section of the Reading data using
HandlerSocket and PERL recipe earlier in this chapter to give us some sample data to read
(and if we've already gone through the PERL or Python recipes, running the SQL commands
again will reset the sample data to its default state).

NoSQL with HandlerSocket

212

How to do it...
1.	 Launch the interactive Ruby interpreter in a terminal window as follows:

irb

2.	 Open a connection to our database in the irb interpreter as follows:
require 'rubygems'

require 'handlersocket'

hs = HandlerSocket.new(:host => '127.0.0.1',:port => '9998')

hs.open_index(0,'test','hs_test','PRIMARY','id,givenname,surname')

3.	 Then, read some data in the irb interpreter as follows:
p hs.execute_single(0,'=',[1])

p hs.execute_single(0,'>',[1],2,2)

p hs.execute_single(0,'>=',[1],20)

How it works...
To read data, we first create a connection to the HandlerSocket read-only port using the
HandlerSocket.new method. This method takes two arguments: the host, which is the IP
address or domain name of the host we are connecting to, and the port. We are connecting
to the local host and the read-only port, so we put in 127.0.0.1 and 9998, respectively.
Then, we call the .open_index method to define the database, table, and columns we are
interested in. This method takes five arguments. First is an identification number, which can
be any integer we want; in our recipe we use 0. The second and third arguments are the
database name and table name we want to read, respectively. The fourth argument is the
name of the key we want to search on. In our example table, the only key is the primary key,
so we use the key word PRIMARY. The fifth argument is a comma-separated list of the
columns we want to read. In our recipe, we name all of the columns in our example table
(id, givenname, and surname).

Chapter 11

213

We are then able to read data using the execute_single method. This method takes three
arguments with the optional fourth and fifth arguments. First is the variable we used when
calling open_index (we used 0 in our recipe), and the second is the comparison operator we
want to use; the supported operators are =, >, <, >=, and <=. The third argument is the key
value we want to search for. The optional fourth and fifth arguments set the maximum number
of rows to return and the number of records to skip before retrieving records, respectively.
If these arguments are not specified, the execute_single method will set them both
to 0, which combine to return only the first matching record for our search. The results are
returned as an array. Of the three calls to the execute_single method in our recipe, the
first returns a single row, the second returns two rows, and the last returns all of the records
in our example table. All are output as a multidimensional array containing a subarray of the
resulting data. The returned values will look like the following command:

[0, [["1", "William", "Hartnell"]]]

[0, [["4", "Tom", "Baker"], ["5", "Peter", "Davison"]]]

[0, [["1", "William", "Hartnell"], ["2", "Patrick", "Troughton"], ["3",
"John", "Pertwee"], ["4", "Tom", "Baker"], ["5", "Peter", "Davison"],
["6", "Colin", "Baker"]]]

The complete output in the irb interpreter will look like the following screenshot:

NoSQL with HandlerSocket

214

See also
ff The source code of the Ruby handlersocket library, along with examples, can be

found at https://github.com/miyucy/handlersocket

Inserting data using HandlerSocket and
Ruby

Now that we can read data (as described in the previous recipe), it's time to learn how to
insert data using Ruby.

Getting ready
Complete the Reading data using HandlerSocket and Ruby recipe described earlier in this
chapter prior to starting this recipe.

How to do it...
1.	 Launch the interactive Ruby interpreter in a terminal window as follows:

irb

2.	 Open a connection to our database in the irb interpreter as follows:
require 'rubygems'

require 'handlersocket'

hsw = HandlerSocket.new(:host => '127.0.0.1',:port => '9999')

hsw.open_index(1,'test','hs_test','PRIMARY','id,givenname,surna
me')

3.	 Still in the irb interpreter, insert a couple of new rows using the following statements:
p hsw.execute_single(1,'+',[7,'Sylvester','McCoy'])

p hsw.execute_single(1,'+',[8,'Paul','McGann'])

4.	 Then, read the rows we entered using the following statements in the irb interpreter:
p hsw.execute_single(1,'=',[7])

p hsw.execute_single(1,'=',[8])

p hsw.execute_single(1,'>=',[1],20)

Chapter 11

215

How it works...
Similar to reading data, we first open a connection with HandlerSocket.new to the
read-write port (9999) when inserting data. We then use the execute_single method to
insert data. This method takes three arguments. First is the number we used when calling
open_index (we used 1 in our recipe), and the second is the + character, which tells the
method we are inserting data. The third argument is a comma-separated list of the values
we want to insert. These must correspond to the comma-separated list of columns we defined
when calling open_index (we used id, givenname, and surname in our recipe). After
successful insertion, the execute_single method will return an array with zeroes, thus
specifying true. This will look like the following command in the irb interpreter:

[0, [["0"]]]

The last step in our recipe is to read the rows we entered and then read all of the rows in our
table. The returned values will look like the following command:

[0, [["7", "Sylvester", "McCoy"]]]

[0, [["8", "Paul", "McGann"]]]

[0, [["1", "William", "Hartnell"], ["2", "Patrick", "Troughton"], ["3",
"John", "Pertwee"], ["4", "Tom", "Baker"], ["5", "Peter", "Davison"],
["6", "Colin", "Baker"], ["7", "Sylvester", "McCoy"], ["8", "Paul",
"McGann"]]]

The complete output of this recipe in irb will look like the following screenshot:

NoSQL with HandlerSocket

216

See also
ff The source code of the Ruby handlersocket library, along with examples, can be

found at https://github.com/miyucy/handlersocket

Updating and deleting data using
HandlerSocket and Ruby

Updating and deleting data is similar to but not quite the same as inserting data. In this
recipe, we will use Ruby and HandlerSocket to update and delete data.

Getting ready
Complete the Inserting data using HandlerSocket and Ruby recipe prior to starting this recipe.

How to do it...
1.	 Launch the interactive Ruby interpreter in a terminal window as follows:

irb

2.	 Run the following commands in the irb interpreter to open a HandlerSocket
connection to our test database and the hs_test table:
require 'rubygems'

require 'handlersocket'

hsu = HandlerSocket.new(:host => '127.0.0.1',:port => '9999')

hsu.open_index(2,'test','hs_test','PRIMARY','givenname')

3.	 Then, update a row in the interpreter using the following statement:
p hsu.execute_single(2,'=',[3],1,0,'U',['Jon'])

4.	 Read out the value of the column we just updated in irb to confirm that the data was
updated using the following statement:
p hsu.execute_single(2,'=',[3])

5.	 Open a connection to use for deleting data using the following statements:
hsd = HandlerSocket.new(:host => '127.0.0.1',:port => '9999')

hsd.open_index(3,'test','hs_test','PRIMARY','id,givenname,surna
me')

Chapter 11

217

6.	 Insert some junk data for us to delete using the following statements:
p hsd.execute_single(3,'+',[101,'Junk','Entry'])

p hsd.execute_single(3,'+',[102,'Junk','Entry'])

p hsd.execute_single(3,'+',[103,'Junk','Entry'])

7.	 Read all of the data in our table, delete the junk data, and then read our table again
to confirm the deletion using the following statements:
p hsd.execute_single(3,'>=',[1],20)

p hsd.execute_single(3,'>',[100],10,0,'D')

p hsd.execute_single(3,'>=',[1],20)

How it works...
To update data, we first open a connection the same way we did when inserting data. In our
recipe, we're only interested in updating a single column. So, when calling the open_index
method, we only specify the givenname column.

We update data in step 3 using the execute_single method but with more arguments
than what we use when reading or inserting data. First is the number we used when calling
open_index (we used 2 in our recipe). The second is the comparison operator we want to
use for finding the values to update; the supported operators are =, >, <, >=, and <=. The
third argument is the key value we want to search for (3 in our recipe). The fourth and fifth
arguments set the maximum number of rows to update and the number of rows to skip before
trying to match records, respectively. In our recipe, we set these to 10 and 0, respectively.

The sixth argument is the character U that tells the method that we are performing an
update. Seventh, is an array of the values we want to update the rows we find to. This array
corresponds to the columns we specified when we called the open_index method; just fill
the givenname column in our recipe. The sixth and seventh arguments set the maximum
number of rows to update and the number of records to skip before searching records,
respectively. We set these to 10 and 0 in our recipe. After a successful update, the
execute_single method will return a comma-separated list containing a 0 if the
command was successful and then the number of rows updated as an array. The
output in irb will look like the following command:

[0, [["1"]]]

We then use the .execute_single method in step 4 to read the column we just updated.
The output in irb will look like the following command:

[0, [["Jon"]]]

NoSQL with HandlerSocket

218

The complete output of steps 1 through 5 of this recipe in irb will look like the
following screenshot:

To test the process of deleting data, we begin with step 5 of our recipe to call HandlerSocket.
new again, this time defining all of the columns in our table instead of just the givenname
column. We also give our connection a new integer identification number, (3), to distinguish it
from the number, (2), we assigned to our update connect.

In step 6 of our recipe, we insert some junk data. Then, in step 7, we read our table, delete
the rows we entered in step 6, and then read the table again to confirm the deletion.

When deleting rows in our recipe, we supply the execute_single method with six
arguments. First is the variable we used when calling open_index (we used 3 in our recipe).
Second is the comparison operator we want to use for finding the rows to delete (> in our
recipe). The third argument is the key value we want to search for (100 in our recipe). The
fourth and fifth arguments set the maximum number of rows to delete and the number of
rows to skip before trying to match records, respectively. In our recipe, we set these to 10
and 0, respectively. The sixth argument is the character D, which tells the method that we are
performing a delete operation. After a successful delete, the execute_single method will
return a comma-separated list first containing a 0 if the command was successful and then
the number of rows deleted as an array. Since we deleted three rows, the output of the delete
operation in irb will look like the following command:

[0, [["3"]]]

Chapter 11

219

The complete output of steps 5 through 7 of this recipe in irb will look like the
following screenshot:

See also
ff The source code of the Ruby handlersocket library, along with examples, is at

https://github.com/miyucy/handlersocket

Using HandlerSocket directly with Telnet
HandlerSocket listens on two ports, 9998 and 9999, for clients to talk to it. This means we
can interact with it directly using telnet.

NoSQL with HandlerSocket

220

Getting ready
Install and configure the HandlerSocket plugin as described in the Installing and configuring
HandlerSocket recipe earlier in this chapter. Launch the mysql command-line client and run
the SQL commands from the Getting ready section of the Reading data using HandlerSocket
and PERL recipe, described earlier in this chapter, to give us some sample data to read (and
if we've already gone through the PERL, Python, or Ruby recipes, running the SQL commands
again will reset the sample data to its default state).

We'll also need to install a telnet client. Most Linux distributions should have one either
installed by default or easily installable from the system package repositories.

How to do it...
1.	 Open telnet and connect to the HandlerSocket read port in a command-line

window as follows:
telnet 127.0.0.1 9998

2.	 Enter the following commands (what looks like spaces in the following code are
all tabs):
P 0 test hs_test PRIMARY id,givenname,surname

0 = 1 1

0 > 1 2 2

0 >= 1 1 20

3.	 Disconnect by typing Ctrl +] and then quit.

4.	 Open a new telnet session; this time connect to the write port using the
following command:
telnet 127.0.0.1 9999

5.	 Run the following commands (remember to use tabs for all white spaces):
P 1	 test hs_test PRIMARY id,givenname,surname

1 + 3 7 Sylvester McCoy

1 + 3 8 Paul McGann

1 >= 1 1 20

6.	 Then, run the following commands in the same telnet session:
P 2 test hs_test PRIMARY givenname

2 = 1 3 1 0 U Jon

1 = 1 3

Chapter 11

221

7.	 Finally, run the following commands in the same telnet session:
P 3 test hs_test PRIMARY id,givenname,surname

3 + 3 101 Junk Entry

3 + 3 102 Junk Entry

3 + 3 103 Junk Entry

1 >= 1 1 20

3 > 1 100 10 0 D

1 >= 1 1 20

How it works...
To read data, we first open a connection using our telnet client and connect to the read-only
port, 9998.

In step 2, we first tell HandlerSocket about the database and table we want to connect to
and the columns we are interested in. This command begins with the key letter, P, and then
a number that is used to identify the connection. The number can be any positive number;
we use 0 for simplicity. We then name the database (test) and the table (hs_test). Next,
we specify the key we want to search on. In our example table, the only key is the primary
key, so we use the key word, PRIMARY. The sixth argument is a comma-separated list of the
columns we want to read. In our recipe, we name all of the columns in our example table (id,
givenname, and surname). All of the arguments must be separated by tabs, not spaces.

With a connection defined, we are now able to read data. To do so, the basic form of
the command takes at least four arguments, with an optional fifth argument. First is the
identification number we chose when defining the connection 0. Second is the comparison
operator we want to use; the supported operators are =, >, <, >=, and <=. The third argument
is the number of index columns we are going to search. This must be equal to or less than the
number of index columns we defined. As we only defined one index column (the primary key
using the key word PRIMARY), we put 1 here. The fourth argument is the index value to search
for. In the recipe, our first search command retrieves the row where id equals 1. The output
will look similar to the following command:

0 3 1 William Hartnell

The first field in the output is 0, which signifies success. The next filed will have each of the
records that are being returned. We defined three columns when we defined our connection,
so the number here is 3. Finally, there are the three fields of the record. Our search was for all
records with id equal to 1, which, of course, only matches one record.

NoSQL with HandlerSocket

222

The second and third search commands in step 2 use the optional fifth argument, which
sets the limit of the number of records to retrieve. By default, if this argument is not set,
HandlerSocket will return only single records, which was fine for our first search. The second
search is for the records where id is greater than 2. This could match many records, so we
limit it to 27, which means we get records three and four back. The output will look similar to
the following command:

0 3 3 John Pertwee 4 Tom Baker

When HandlerSocket returns data, it does so as one long string, so when it has finished giving
us one result of the several, it immediately starts giving us the second, and so on. As the
second field in the output is 3, we know the first three fields following it are the first result
and the next three fields are the second.

The third search grabs up to 20 records where id is greater than or equal to 1. As our table
only has six rows, this search has the effect of grabbing all records. At first glance, the output
looks a little jumbled, but once we know what to look for, it is easy to parse.

In step 3 of our recipe, we disconnect so that we can reconnect on the write port. The
complete input and output of steps 1 through 3 will look like the following screenshot:

Chapter 11

223

In step 4 of this recipe, we reconnect to the read-write port, 9999, this time so that we can
insert, update, and delete records. In step 5 we insert some new rows. First, we define a
connection, identifying the connection with the number 1 this time.

The command to insert takes three arguments plus the data we want to insert. The first
argument is the connection identification number. The second is the + character, which
signifies that we are inserting data. The third is the number of fields we specified when
defining our connection (3 in our recipe). In our recipe, we insert two rows. After successful
insertion, HandlerSocket responds with the following command:

0 1 0

The first value is the error code. A 0 value means there was no error. The second field is the
number of columns in the result set. The third field is the actual result. For an insert, the
result of a successful insert is a single column with the result of 0.

In step 6, we update a row. When defining our database connection, we only specify the
givenname column because that is the column we are updating. The fields in the update
statement are, first, the connection identification number and second, a comparison operator.
In our recipe, we use = because we are looking for an exact match. Third is the number of
columns in our table we are updating. Fourth is the primary key value we are searching for.
Fifth is the limit of the number of rows to modify. Sixth is the offset from the first row in the
table to begin searching from. Seventh is the key letter, U, to signify we are performing an
update. Eighth is the new values, or in our recipe, value. All together the line looks like the
following command:

2 = 1 3 1 0 U Jon

The output looks like the following command:

0 1 1

As with inserting data, the first value in the response is the error code, with 0 meaning
success. Likewise, the second value is the number of columns in the response. For an
update, this will most likely be 1. The third column in an update response is the number
of rows modified; 1 in our recipe.

NoSQL with HandlerSocket

224

The complete output of steps 4 through 6 will look like the following screenshot:

In step 7, we first insert some junk rows and then delete them. The insertion is the same as
before. The syntax of the delete statement is similar to the update syntax, except for the fact
that because we are deleting, we don't need to provide the new values at the end. We use D
instead of U so that HandlerSocket knows we are performing a delete. The delete statement
now looks as follows:

3 > 1 100 10 0 D

The effect of this statement is to search for up to 10 records that have id values greater than
100 and delete them.

Chapter 11

225

The complete output of step 7 will look like the following screenshot:

See also
ff The documentation of the HandlerSocket protocol is available at https://github.

com/DeNA/HandlerSocket-Plugin-for-MySQL/blob/master/docs-en/
protocol.en.txt

12
NoSQL with

the Cassandra
Storage Engine

In this chapter, we will cover the following recipes:

ff Installing the Cassandra storage engine

ff Mapping data between MariaDB and Cassandra

ff Using INSERT, UPDATE, and DELETE with the Cassandra storage engine

ff Using SELECT with the Cassandra storage engine

Introduction
One unique feature in MariaDB is the Cassandra storage engine. This is a specialized storage
engine, similar to the Connect storage engine featured in Chapter 5, The CONNECT Storage
Engine. Like Connect, it allows us to access data stored outside of MariaDB. Unlike Connect,
the Cassandra storage engine is specific to a certain type of data, namely, it lets us connect
MariaDB to a Cassandra cluster.

In this chapter, there are recipes on installing and configuring the Cassandra storage engine,
defining tables that use the storage engine to insert, update, delete, and query data.

The Cassandra storage engine in MariaDB is built and packaged only for Linux-based
operating systems. As such, the recipes in this chapter assume that we are using a
variant of Linux as we complete them.

NoSQL with the Cassandra Storage Engine

228

Installing the Cassandra storage engine
Before we can use the Cassandra storage engine, we need to enable it.

How to do it...
1.	 On Red Hat, CentOS, and Fedora distributions, we may have to install a separate

Cassandra storage engine package with the following command:
sudo yum install MariaDB-cassandra-engine

2.	 Open the mysql command-line client, connect to our MariaDB server as a user with
the SUPER privilege and run the following command:
INSTALL SONAME 'ha_cassandra';

3.	 Still connected to our MariaDB server, run the following command:
SHOW VARIABLES LIKE "Cassandra%";

4.	 Add the following code to the [mysqld] section of our my.cnf file:
optimizer_switch = 'join_cache_hashed=on'
join_cache_level = 7

How it works...
The Cassandra storage engine is included with MariaDB, but it is not enabled by default.
To enable it, we will run the INSTALL SONAME command. This is a one-time operation.

The output of the SHOW VARIABLES command will look like the following screenshot:

Chapter 12

229

These variables can be set the same as any other MariaDB variable. They only exist, however,
after the Cassandra storage engine has been installed; so we must not add these variables
to our my.cnf file until after we enable the storage engine. If we add them before we run the
INSTALL SONAME command, MariaDB will refuse to start.

In our recipe, we make two additions to our my.cnf file. These are used because Cassandra
supports batched key access in no-association mode, which means that the SQL layer needs
to do the key hashing. The settings we added do that.

There's more...
There are also several status variables that we can query after enabling the Cassandra
storage engine. Similar to the Cassandra storage engine variables, they are all prefaced
with cassandra_ so that we can search for all of them with the following command:

SHOW STATUS LIKE "Cassandra%";

The output of this command will vary based on how much we have used the Cassandra
storage engine. For example, after first installing it, the values will all be zeroes as shown
in the following screenshot:

See also
ff The full documentation of the Cassandra storage engine is available at

https://mariadb.com/kb/en/cassandra-storage-engine/

ff The full documentation of Cassandra is available at
http://cassandra.apache.org/

NoSQL with the Cassandra Storage Engine

230

Mapping data between MariaDB and
Cassandra

To access data stored in a Cassandra cluster from MariaDB, we create a special table that
defines where the Cassandra cluster we want to connect with is located, and how the data
stored there should be treated in MariaDB.

Getting ready
We should complete the Installing the Cassandra storage engine recipe before starting
this recipe.

Also, before we can complete this recipe, we need to have a running installation of Cassandra
that we can connect to from our MariaDB server. The following are the instructions for
installing a single-node Cassandra instance on the same host as we are running MariaDB on.

It is also worth noting that the Cassandra storage engine works better with Cassandra
version 1.x than with Cassandra 2.0 and later. This is because of changes to the Cassandra
data model and the introduction of password-based authentication. These changes will be
addressed in future updates to the Cassandra storage engine.

On Red Hat, CentOS, and Fedora, first ensure that either Java 6 or Java 7 is installed.
Refer to http://www.datastax.com/documentation/cassandra/1.2/webhelp/
cassandra/install/installJreRHEL.html for instructions on downloading and
installing the Java JRE. When installed correctly, the java -version command should
output something similar to the following screenshot (the version and build numbers will
most likely be different):

After Java is installed, create a datastax.repo file at /etc/yum.repos.d/ and add the
following code to it:

[datastax]
name = DataStax Repo for Apache Cassandra
baseurl = http://rpm.datastax.com/community
enabled = 1
gpgcheck = 0

Chapter 12

231

We can now install Cassandra with the following command:

sudo yum install cassandra12

After installing, start Cassandra with the following command:

sudo service cassandra start

On Ubuntu and Debian, we will run the following two commands to add the signing key and
the Cassandra repository:

sudo apt-key adv --recv-keys \

 --keyserver pgp.mit.edu 4BD736A82B5C1B00

sudo add-apt-repository \

 'deb http://www.apache.org/dist/cassandra/debian 11x main'

Then, run the following two commands to update APT and install Cassandra:

sudo apt-get update

sudo apt-get install cassandra

We are now ready for this recipe.

How to do it...
1.	 If we are running Cassandra 1.1, run the cqlsh command and create a Cassandra

keyspace called casstest with the following commands:
CREATE KEYSPACE casstest WITH

 strategy_class = 'org.apache.cassandra.locator.SimpleStrategy'

 AND strategy_options:replication_factor='1';

2.	 If we are running Cassandra 1.2, run the cqlsh command and create a Cassandra
keyspace called casstest with the following commands:
CREATE KEYSPACE casstest

 WITH REPLICATION = {'class' : 'SimpleStrategy',
 'replication_factor': 1};

3.	 Still in cqlsh, enter the following commands to create a Cassandra column family
called test in the casstest keyspace:
USE casstest;

CREATE columnfamily test01 (

 pk varchar primary key,

 data1 varchar,

 data2 bigint);

NoSQL with the Cassandra Storage Engine

232

4.	 Still in cqlsh, enter the following commands to create an additional Cassandra
column family called notes:
CREATE columnfamily notes (

 note_id int primary key,

 note_note text

); Java support.exit

5.	 Open the mysql command-line client and connect to our MariaDB database server
and connect to the test database (first creating it if necessary):
CREATE DATABASE IF NOT EXISTS test;

USE test;

6.	 Run the following commands to create a table in our test database that maps to the
test01 column family we created in step 3:
CREATE TABLE test01_cass (

 pk VARCHAR(36) PRIMARY KEY,

 data1 VARCHAR(60), Java support.

 data2 BIGINT

) ENGINE=cassandra

 THRIFT_HOST='localhost'

 KEYSPACE='casstest'

 COLUMN_FAMILY='test01';

7.	 Run the following commands to create a table that maps to the notes column family
we created in step 4:

CREATE TABLE notes_cass (

 note_id INT PRIMARY KEY,

 note_note mediumtext

) ENGINE=cassandra

 DEFAULT CHARSET=utf8

 THRIFT_HOST='localhost'

 KEYSPACE='casstest'

 COLUMN_FAMILY='notes';

Chapter 12

233

How it works...
There are two parts for mapping a table in MariaDB to a corresponding column family in
Cassandra. First is the actual definition of the columns. These columns must be named
the same as they are named in Cassandra and the data types must be compatible.

The second part is what comes after the table definition. This part is where we specify
that we want to use the Cassandra storage engine and the connection parameters. We're
connecting to a Cassandra instance hosted on our local server, so we specify localhost
in the THRIFT_HOST parameter. The other two parameters that we need to specify are
the KEYSPACE and COLUMN_FAMILY parameters we are using. These are casstest
and test01, respectively.

There's more...
If our Cassandra instance is configured to use a non-standard port, we can use the
THRIFT_PORT parameter to set what it is.

Also, if we set the cassandra_default_thrift_host variable in the [mysqld] section
of our my.cnf file, we do not have to specify a THRIFT_HOST parameter (unless, of course,
we are connecting to a different host).

Some data types in Cassandra and MariaDB are not directly mapped as they are not
equivalent. The following table lists the mapping of Cassandra data types to their
MariaDB equivalents:

Cassandra MariaDB
ascii BLOB, VARCHAR(n), and use CHARSET=latin1
bigint BIGINT, TINY, SHORT (use which one fits the actual data in Cassandra)
blob BLOB, VARBINARY(n)
boolean BOOL

counter BIGINT (this value is read-only in MariaDB)
decimal VARBINARY(n)

double DOUBLE

float FLOAT

int INT

text BLOB, VARCHAR(n), and use CHARSET=utf8
timestamp TIMESTAMP (for second precision), TIMESTAMP(6) (for microsecond

precision), BIGINT (for the actual 64-bit Cassandra timestamp)
uuid CHAR(36) (Cassandra UUID values are represented as text in MariaDB)
varint VARBINARY(n)

NoSQL with the Cassandra Storage Engine

234

Also, size limitations in Cassandra are more relaxed than in MariaDB. For those MariaDB
data types specified in the previous table with values such as VARBINARY(n), the value
of n should be set large enough to handle whatever values are actually found in our
Cassandra database.

We may run into instances where this is not possible. For example, Cassandra has a
2 gigabyte limit on its rowkey length. In MariaDB, the limit for unique key lengths is about
1.5 kilobytes. If the actual data in Cassandra goes beyond MariaDB's limits, it may not be
possible to access it from MariaDB.

See also
ff The full documentation of the Cassandra storage engine is available at

https://mariadb.com/kb/en/cassandra-storage-engine/

ff The full documentation of Cassandra is available at
http://cassandra.apache.org/

Using INSERT, UPDATE, and DELETE with
the Cassandra storage engine

Using a Cassandra storage engine table feels much like using any other table, but there are
some important differences. This recipe demonstrates it.

Getting ready
We should complete the Mapping data between MariaDB and Cassandra recipe, before
starting this recipe. Also, import the isfdb database as described in the Importing the
data exported by mysqldump recipe in Chapter 2, Diving Deep into MariaDB, so that we
have some data to use.

How to do it...
1.	 Open the mysql command-line client and connect to our MariaDB database server

and then to the test database.

2.	 Insert some sample data into the test01_cass table, as follows:
INSERT INTO test01_cass VALUES

 ('rowkey10', 'data1-value', 123456),

 ('rowkey11', 'data1-value2', 34543),

 ('rowkey12', 'data1-value3', 444),

 ('rowkey13', 'data1-value4', 777666555);

Chapter 12

235

3.	 Fill the empty notes_cass table with data from the isfdb.notes table using the
following command:
INSERT INTO notes_cass SELECT * FROM isfdb.notes;

4.	 Update the test01_cass data2 value for rowkey12 to 444, using the
following command:
UPDATE test01_cass SET data2=454 WHERE pk='rowkey12';

5.	 Delete a row from the test01_cass table using the following command:
DELETE FROM test01_cass WHERE pk = 'rowkey13';

6.	 Exit the mysql command-line client, launch the cqlsh client, and run the
following commands:
USE casstest;

SELECT * FROM test01;

How it works...
As long as proper care has been taken when creating the Cassandra storage engine tables
in MariaDB so that the data types are compatible (if not equal), the INSERT and UPDATE
operations appear to work as we would expect. We can even perform the INSERT INTO
... SELECT FROM ... operations to move data from an InnoDB, Aria, or other standard
MariaDB table into a Cassandra storage engine table and vice versa.

However, inserting values into Cassandra tables actually function as INSERT or UPDATE style
statements. This is because of the way in which Cassandra's data model works. Rows can
and will be silently overwritten if, for example, the primary keys match. This is how Cassandra
is supposed to work, so it is not an error. We just need to be aware of it when using the
Cassandra storage engine.

In the last step of the recipe, we switch over to the cqlsh client to show that the data
we added is in our Cassandra database. The output of this step will look similar to the
following screenshot:

NoSQL with the Cassandra Storage Engine

236

There's more...
Cassandra has a feature that allows individual rows to have their own sets of columns.
These columns can be accessed using MariaDB's dynamic columns feature. To do so, when
we define our Cassandra storage engine table, we just need to define a BLOB column with the
DYNAMIC_COLUMN_STORAGE=yes attribute. Refer to the recipes related to dynamic columns
in Chapter 10, Exploring Dynamic and Virtual Columns in MariaDB for more information.

See also
ff The full documentation of the Cassandra storage engine is available at

https://mariadb.com/kb/en/cassandra-storage-engine/

ff The full documentation of Cassandra is available at
http://cassandra.apache.org/

Using SELECT with the Cassandra storage
engine

As with the previous recipe, the SELECT statements are much the same when using the
Cassandra storage engine tables.

Getting ready
First, we need to complete the Using INSERT, UPDATE, and DELETE with the Cassandra
storage engine recipe.

How to do it...
1.	 Open the mysql command-line client and connect to our MariaDB database server

and the test database.

2.	 Select everything from the test01_cass table using the following command:
SELECT * FROM test01_cass;

3.	 Select ten rows from the notes_cass table using the following command:
SELECT * FROM notes_cass LIMIT 10;

Chapter 12

237

4.	 Select data with multiple WHERE clauses, an ORDER BY clause, and a LIMIT clause
using the following commands:
SELECT * FROM notes_cass

 WHERE note_note IS NOT NULL

 AND note_id < 500

 AND LENGTH(note_note) < 30

 ORDER BY note_id DESC

 LIMIT 10;

5.	 Join the notes_cass table in the test database to the publishers table in
the isfdb database with some WHERE clauses and a LIMIT clause, using the
following commands:
SELECT publisher_name,publisher_wikipedia,note_note

 FROM isfdb.publishers INNER JOIN notes_cass

 USING (note_id)

 WHERE note_note IS NOT NULL

 AND publisher_wikipedia IS NOT NULL

 AND LENGTH(note_note) < 30

 AND LENGTH(publisher_wikipedia) < 40

 LIMIT 10;

How it works...
The SELECT statements for tables that use the Cassandra storage engine are much the
same as the other SELECT statements. The main difference is that when the query is actually
run, the Cassandra storage engine connects to a Cassandra cluster to fetch the data we are
asking for instead of to a regular table on the local filesystem. We can use the LIMIT, WHERE,
and other clauses to refine our results, and even join our data to other tables, just as if it was
a regular MariaDB table.

NoSQL with the Cassandra Storage Engine

238

The SELECT statement from step 5 of our recipe will look something like the following
screenshot (the actual results may be different depending on the version of the isfdb
database you are using):

There's more...
A big problem with NoSQL databases such as Cassandra is that they simply do not have
easy ways to do relational-database-style things such as JOINs. This is a big reason why the
Cassandra storage engine was created. Using the Cassandra storage engine lets us not
only perform JOINs between the data stored in MariaDB and the data stored in a Cassandra
cluster, but it also enables us to do so between two or more Cassandra clusters, keyspaces,
or column families.

That said, the Cassandra storage engine is not really suitable for running analytics-type
queries that sift through large amounts of data stored in a Cassandra cluster. There are
plenty of excellent tools on the Cassandra side (such as Apache Hive or Apache Pig), which
are designed for just those sorts of things. The Cassandra storage engine is merely an
easy-to-use, convenient window from a SQL environment (MariaDB) into a NoSQL
environment (Cassandra).

We should also be careful with the complex SELECT statements. A query that does a full
table scan, for example, may work fine when all of the tables use the InnoDB or MyISAM
storage engines, but they can take forever when a Cassandra storage engine table is included
(for example, the complex SELECT statement from the Using SHOW EXPLAIN with running
queries recipe in Chapter 2, Diving Deep into MariaDB).

Chapter 12

239

See also
ff The full documentation of the Cassandra storage engine is available at

https://mariadb.com/kb/en/cassandra-storage-engine/

ff The full documentation of Cassandra is available at
http://cassandra.apache.org/

ff More details on how the Cassandra storage engine handles JOINs can be found at
https://mariadb.com/kb/en/how-are-joins-handled-with-cassandra/

13
MariaDB Security

In this chapter, we will cover the following recipes:

ff Securing MariaDB with mysql_secure_installation

ff Securing MariaDB files on Linux

ff Securing MariaDB files on Windows

ff Checking for users with insecure passwords

ff Encrypting connections with SSL

ff Using roles to control user permissions

ff Authenticating using the PAM authentication plugin

Introduction
Security is important, but because the value of the data in a given database ranges from
worthless to billions of dollars, deciding on how much and what type of security to employ
varies greatly. The recipes in this chapter focus on a few common ways to enhance MariaDB's
default security, but they really only scratch the surface of the topic.

Securing MariaDB with mysql_secure_
installation

The simplest way to add a bit of extra security to our MariaDB installation is just a
command line away.

MariaDB Security

242

How to do it...
To secure a default install of MariaDB, perform the following steps:

1.	 Open a terminal and run the following command:
mysql_secure_installation

2.	 As prompted by the script, set a password for the root user, disallow remote root
logins, and remove anonymous users.

3.	 Since we've been using the test database for various recipes in the current and
other chapters, we may not want to remove it when prompted.

4.	 Reload the privilege tables when prompted.

How it works...
The mysql_secure_installation program is actually just a script written in PERL. Its sole
purpose is to apply some basic security settings that nearly every MariaDB installation should
have. This script should be run first thing after installing MariaDB on a server. It takes only a
minute and should be considered as an essential step that we must perform whenever we
install MariaDB.

There's more...
When installing MariaDB on Windows, Ubuntu, or Debian, we are prompted to set a root
password. If we went ahead and did so, we would not need to set a root password when
prompted by the script (and the script will tell us so). However, we will not be prompted to
set a root user password when installing MariaDB on Red Hat, CentOS, or Fedora, so on
those systems, running mysql_secure_installation is doubly important.

See also
ff The full documentation of the mysql_secure_installation script is available at

https://mariadb.com/kb/en/mysql_secure_installation/

Securing MariaDB files on Linux
Filesystem security is an important part of keeping the data in our databases safe. This is
because MariaDB, like most programs, stores the data it handles in files on our filesystem.
If those files can be read and copied by anyone who can log in to the server, then there's
nothing stopping them from making a copy of those files and then accessing them with
MariaDB on another server. This recipe is about securing our files on Linux.

Chapter 13

243

Getting ready
Prior to starting this recipe, use the package manager to install the tree program.

On Fedora, Red Hat, or CentOS, run the following command:

sudo yum install tree

On Debian or Ubuntu, run the following command:

sudo apt-get install tree

How to do it...
1.	 Open a terminal window and run the following statements:

sudo tree -puga /usr/lib*/mysql /lib*/mysql \

 /etc/mysql* /etc/my.cnf* /var/lib*/mysql

2.	 Stop MariaDB if it is running.

3.	 Change the ownership of all files that are not owned by either the root or mysql
users to whichever of those is used for other files in the directory. For example,
consider the following statement:
sudo chown -v mysql: /var/lib/mysql/flightstats/ontime.frm

4.	 Remove the read and write permissions from the group and other users from all
files and directories under the /var/lib/mysql/ directory. The permissions of the
/var/lib/mysql directory itself and the /var/lib/mysql/mysql.sock file (if it
exists) are different, they should be 755 and 777, respectively. This is done using the
following statements:
sudo chmod -vR go-rw /var/lib/mysql/

sudo chmod -v 755 /var/lib/mysql

sudo chmod -v 777 /var/lib/mysql/mysql.sock

5.	 Start MariaDB again.

How it works...
For this recipe, we use the tree program to view the ownership and permissions of various
MariaDB files on our filesystem. This same information could be gathered using the find or
ls programs, but their output is not as easy to read as the output of tree.

MariaDB Security

244

The most vulnerable MariaDB directory on Linux is the one where our data is actually stored.
By default, this directory is /var/lib/mysql/, but it can be configured to reside somewhere
else. If there does not appear to be any data under /var/lib/mysql/, then check the value
of the datadir variable in our my.cnf file or in the mysql command-line client as follows:

SHOW VARIABLES LIKE 'datadir';

The way to prevent access to our databases from people who otherwise have legitimate
access to our database server is to limit the access of the data directory to just the mysql
user. This user is created automatically when installing the MariaDB packages.

In this recipe, we use the chown command to change the ownership of a single file. We
can also recursively change the ownership of all files in a directory (and directories under
that directory) in one go using chown with the -R flag on a directory. This is shown in the
following statement:

sudo chown -Rv mysql: /var/lib/mysql/

All files under the /var/lib/mysql/ directory, with the exception of that directory itself,
and the mysql.sock socket file (if it is there) can be set so that only the mysql user can
access them. On Linux, this is typically set as 600 permissions for files and 700 permissions
for the directories.

The socket file needs to have global read and write permissions so that remote clients can
connect to our server. On some Linux distributions, this file is found under the /var/run/ or
/run/ directory. So, we can lock down /var/lib/mysql/ even tighter. However, on other
Linux distributions, the socket file is found under /var/lib/mysql/, and if the directory is
/var/lib/mysql/, it must be accessible to everyone (755 permissions), and the socket file
must have global read-write permissions (777).

If we are on a Linux distribution where the socket file is located under /var/lib/mysql/, we
can configure a new location of our choice and then lock down the data directory so that only
the mysql user can access it (700 permissions). This is a good thing to do as anyone with
read access to the data directory, while they may not have rights to the files, can still see the
names of all of our databases.

We should also be careful to keep our server up to date with all of the latest security updates
of both the operating system and MariaDB.

There's more...
On Debian and Ubuntu distributions, there is a special file under /etc/mysql/ named
debian.cnf, and like our data directory, special care should be taken to keep this file
private. This file is automatically created when installing MariaDB. An example of this
can be seen in the following screenshot:

Chapter 13

245

The two password entries are randomly generated and will match each other. This file is used
by the operating system to perform upgrades and other routine maintenance using the special
debian-sys-maint user that is created automatically when installing MariaDB on Debian
or Ubuntu. This database user has full access to all of our databases (if it didn't, it couldn't
do the things it has to do). By default, this file is locked down so that only our system's root
user has read and write access (600 or -rw, if we're viewing the permissions with ls -l). We
should never change this, and if we use a configuration monitoring tool, we might want to set
up a check to make sure that this file's permissions stay locked down.

If an attacker gains physical access to our database server, meaning they can open it up
and physically remove the disk drive, our only way to prevent such an access to our database
files is if we encrypt our entire disk. If we elect to not utilize encryption, either because of the
performance penalty or some other reason, we need to make sure that the physical security
of our server is appropriate to the value of the data in our database. The type or amount of
security that this entails will vary on a case-by-case basis.

Securing MariaDB files on Windows
Filesystem security is an important part of keeping the data in our databases safe. This is
because MariaDB, like most programs, stores the data it handles in the files on our filesystem.
If these files can be read and copied by anyone who can log in to the server, then there's
nothing stopping them from making a copy of those files and then accessing them with
MariaDB on another server. This recipe is about securing our files on Windows.

MariaDB Security

246

How to do it...
1.	 Using Windows Explorer, navigate to the MariaDB installation directory (in MariaDB

10.0, the default location is C:\Program Files\MariaDB 10.0\).

2.	 Right-click on the directory and select Properties, as shown in the following screenshot:

3.	 In the Properties window, click on the Security tab and check the permissions. The
SYSTEM and Administrator accounts should have full rights to the directory, but
standard users should only have Read & execute, List folder contents, and Read
permissions. They should not have Write or any Special permissions as shown in
the following screenshot:

Chapter 13

247

4.	 Apply any changes if necessary and click on OK to close the Properties window.

How it works...
By default, the MariaDB installer for Windows configures the installation directory to have
proper permissions. This doesn't mean that we can just assume everything is all right and we
should not check periodically to make sure that the permissions are still what they should be.

We should also be careful to keep our server up to date with all of the latest security updates
to both the operating system and MariaDB.

There's more...
If an attacker gains physical access to our database server, meaning they can open it up
and physically remove the disk drive, our only way to prevent access to our database files
is if we encrypt our hard drive. If we select to not utilize encryption, either because of the
performance penalty or some other reason, we need to make sure that the physical security
of our server is appropriate to the value of the data in our database. The type or amount of
security that this entails will vary on a case-by-case basis.

MariaDB Security

248

Checking for users with insecure passwords
Our actual MariaDB user passwords are not stored in plain text by MariaDB as it would be very
insecure. Instead, a mathematical hash of the password is stored. When we are connected,
MariaDB hashes the password that we enter and compares it to the stored hash. This is all
well and good, but in MariaDB, there are actually two hashing options and one is definitely
better than the other.

How to do it...
To discover the password hashing function used by MariaDB and to make sure all of the users
on our server are using the more secure option, perform the following steps:

1.	 Open the mysql command-line client and connect to our MariaDB database server
with a user that has the SUPER privilege.

2.	 Find out what the value of the old_passwords variable is by using the
following statement:
SELECT @@old_passwords;

3.	 If the value is not 0, inspect our configuration files and look for the setting. Remove
any found instances (the entire line) and restart MariaDB.

4.	 Go back to the mysql command-line client and select the Host, User, and
Password columns from the mysql.user table using the following statement:
SELECT Host,User,Password FROM mysql.user;

5.	 In the output, look for any users with short (16 characters) or empty values in the
Password column.

6.	 Contact the identified users and have them set a new password.

How it works...
A long time back, in MariaDB's past, the password hashes generated were only 16
hexadecimal digits long. This was fine back then, but these password hashes are no
longer fine today. Password hashes in MariaDB today begin with a * character followed by
40 hexadecimal digits. These hashes are much more secure, and all the users who still have
old password hashes should upgrade them to the new style.

Before we tell users to change their passwords, we need to ensure that the new passwords
they set will use the new password hash. The old_password variable controls which hashing
function is to be used. By default, it is 0, which means the new password hashing function will
be used. If set to 1, the old hashing function is used. This setting was introduced for backward
compatibility when the new hashing function was introduced so that the old clients could
still connect.

Chapter 13

249

Every modern MariaDB client application should support the new password hashes, so there
is no longer a need to have old_password=1. However, there are old example configurations
out there that people sometimes copy and paste which contain this setting and which means
we may have it set and not realize it.

Using old-style password hashes is dangerous because they are so short. Modern computers
can crack them fairly easily, so they should never be used.

Once we've verified that our MariaDB configuration is not setting old_password=1
anywhere, we can have our users change their passwords (or change it for them). To identify
users with old-style passwords, we can simply look at the hashes. We do this by selecting
them from the mysql.user table using the following command:

SELECT User,Password FROM mysql.user;

The output will likely contain many more entries, but will be similar to the following screenshot:

The badpass user has an old-style password hash and the goodpass user has a
current-style password hash. To properly identify the users, we would want to also
select the Host column, but to make the output easier to read, it was not used in
this simulated example.

See also
ff The documentation of the PASSWORD() function is available at

https://mariadb.com/kb/en/password/

ff The documentation of the SET PASSWORD command is available at
https://mariadb.com/kb/en/set-password/

Encrypting connections with SSL
When we are connecting to a MariaDB database running on our local workstation, there's
really no need to think about whether or not the traffic between the mysql client and our
database is secure. The traffic is all local and is confined to a single machine.

MariaDB Security

250

If, on the other hand, our client is running on one server and our database is on another
server in some other part of the world, or even in the same datacenter, we should think
about encrypting the traffic between the two.

Getting ready
This is a Linux-only recipe. To prepare for this recipe, we will need a set of SSL certificates.
Certificates signed by a recognized and trusted certificate authority are preferred, but we
can also use certificates we create ourselves. To create a set of self-signed certificates,
we need to perform the following steps:

1.	 Create a temporary directory and navigate to it by using the following statement:
mkdir -v ssl-tmp;cd ssl-tmp

2.	 Create a certificate authority key file using the following statement:
openssl genrsa -out mariadb-ca.key 4096

3.	 Create a certificate authority certificate using the following statements:
openssl req -x509 -new -nodes -days 9999 \
 -key mariadb-ca.key \
 -out mariadb-ca.pem

4.	 Answer the questions asked when running the command in step 3 using the defaults
or our actual information. Do the same when asked in subsequent steps.

5.	 Create a key and certificate files for our MariaDB server using the following set
of statements:
openssl genrsa -out mariadb-server.key 4096

openssl req -new \
 -key mariadb-server.key \
 -out mariadb-server.csr

openssl x509 -req -set_serial 01 -days 9999 \
 -CA mariadb-ca.pem \
 -CAkey mariadb-ca.key \
 -in mariadb-server.csr \
 -out mariadb-server.pem

Chapter 13

251

6.	 Create a key and a certificate file to use with the mysql command-line client using
the following set of statements:
openssl genrsa -out mariadb-client.key 4096

openssl req -new \
 -key mariadb-client.key \
 -out mariadb-client.csr

openssl x509 -req -set_serial 02 -days 9999 \
 -CA mariadb-ca.pem \
 -CAkey mariadb-ca.key \
 -in mariadb-client.csr \
 -out mariadb-client.pem

7.	 Move the certificates and keys to our MariaDB data directory using the
following statements:
sudo mv -vi mariadb*.pem /var/lib/mysql/
sudo mv -vi mariadb*.key /var/lib/mysql/

We are now ready to start the actual recipe. The names used in the recipe will match the
names of the certificates and keys we just created here. If we have other certificates and
keys we want to use instead, we just need to modify the recipe to match their names.

How to do it...
1.	 Edit our configuration and add the following statements to the bottom of our

my.cnf file or to an ssl.cnf file under the /etc/mysql/conf.d/ or /etc/
my.cnf.d/ directories:
SSL configuration for mysqld and the mysql client

[mysqld]

ssl-ca=/var/lib/mysql/mariadb-ca.pem

ssl-key=/var/lib/mysql/mariadb-server.key

ssl-cert=/var/lib/mysql/mariadb-server.pem
[mysql]

ssl-ca=/var/lib/mysql/mariadb-ca.pem

ssl-key=/var/lib/mysql/mariadb-client.key

ssl-cert=/var/lib/mysql/mariadb-client.pem

MariaDB Security

252

2.	 Restart MariaDB.

3.	 Connect to MariaDB with the mysql command-line client and run the
following commands:
STATUS;

SHOW VARIABLES LIKE 'have_ssl';

SHOW STATUS LIKE 'Ssl%';

4.	 Create a user that requires SSL by using the following statement:
GRANT ALL on test.* TO 'ssluser'@'localhost'

 IDENTIFIED BY 'ssluserpassword'

 REQUIRE SSL;

5.	 Exit the client and then reconnect as ssluser (this should succeed):
mysql -u ssluser -p test

6.	 Exit the client and then reconnect as ssluser using the --skip-ssl flag on the
command line (this connection attempt should fail):
mysql -u ssluser -p --skip-ssl test

7.	 Exit the client and then reconnect as a different user that does not have
REQUIRE SSL as part of their GRANT statements using the --skip-ssl
flag (this connection attempt should succeed).
mysql -u root -p --skip-ssl

How it works...
SSL is supported in MariaDB Linux packages using whatever the system default version
of OpenSSL is. Enabling support on the server side for SSL connections is simply a matter
of adding the ssl-ca, ssl-key, and ssl-cert variables to a [mysqld] section of our
MariaDB configuration. On the client, we can choose to specify the information every time
we connect, as shown in the following statements:

mysql -u ssluser –ssl-ca=/var/lib/mysql/mariadb-ca.pem \

 --ssl-key=/var/lib/mysql/mariadb-client.key \

 --ssl-cert=/var/lib/mysql/mariadb-client.pem test

However, it is far easier for us to add these to a [mysql] section of a configuration file.

Once SSL support is enabled, we can verify if it is working using the STATUS; and SHOW
VARIABLES LIKE 'have_ssl'; commands.

Chapter 13

253

The STATUS; command contains an SSL line, which shows us the SSL cipher being used
to encrypt our connection to the database. An example of what this line looks like is shown
as follows:

SSL: Cipher in use is DHE-RSA-AES256-SHA

The complete output of the STATUS; command will look similar to the following screenshot:

If SSL can be used and it is enabled, the output of the SHOW VARIABLES LIKE 'have_
ssl'; command will look like the following screenshot:

MariaDB Security

254

If our installation of MariaDB supports SSL, but it is just not configured, the value of the
have_ssl variable will be DISABLED. If SSL is not supported or built-in in our installation
of MariaDB, the variable will be set to NO.

The SHOW STATUS LIKE 'Ssl%'; command shows us all of the various SSL status
variables. The complete output is too large to show in a screenshot, but the following is
an example screenshot showing just the Ssl_session% status variables:

When creating users, we can add a REQUIRE SSL option to the end that will force that user
to connect using SSL. Users who don't have the REQUIRE option are free to connect with
or without using SSL. To connect without SSL, we can add the --skip-ssl option to our
command line. If a user with REQUIRE SSL tries to do this, they will get an error when they
try to connect, as shown in the following screenshot:

The error is exactly like the error for a mistyped password.

There's more...
We can restrict a user's SSL connections to require specific certificates and specific ciphers
if we want to. This is done as part of the GRANT command, but instead of simply saying
REQUIRE SSL, we can use the following statements:

GRANT ALL on test.* TO 'ssluser'@'localhost'
 IDENTIFIED BY 'ssluserpassword'
 REQUIRE ISSUER '/C=US/ST=NC/L=Raleigh/0=MariaDB'
 AND CIPHER 'ECDHE-RSA-AES256-GCM-SHA384';

Chapter 13

255

The information after REQUIRE ISSUER must match our actual certificates, and CIPHER
needs to be the one supported by MariaDB. The Ssl_cipher_list status variable has
a list of all supported ciphers. We can also specify the name and force the use of a valid
X509 certificate.

Another thing we could do would be to get our certificate signed by a recognized third-party
signing authority like we would for an SSL-enabled website. The actual encryption is no
different (SSL is SSL), but the fact that the certificate is verified adds a measure of trust.

See also
ff SSL system variables are documented at:

https://mariadb.com/kb/en/ssl-server-system-variables/

ff SSL status variables are documented, along with other status variables, at
https://mariadb.com/kb/en/server-status-variables/

ff Per account SSL options for GRANT statements are documented at
https://mariadb.com/kb/en/grant/#per-account-ssl-options

Using roles to control user permissions
Roles are an alternative way of managing permissions. They are used to give users
permissions as a group instead of individually. For example, all users from the finance
department could be assigned to a finance role with permissions specific to the tasks
they need to perform.

Roles were first introduced in MariaDB 10.0.

How to do it...
To create an example role and demonstrate how roles work, perform the following steps:

1.	 Launch the mysql command-line client and connect to our MariaDB database server.

2.	 Create a test database, if it doesn't exist, using the following statement:
CREATE DATABASE IF NOT EXISTS test;

3.	 Run the following command to create a role:
CREATE ROLE read_only;

4.	 Grant the role some permissions using the following statement:
GRANT SELECT ON test.* TO read_only;
GRANT USAGE ON test.* TO read_only;

5.	 Display the permissions granted to the role using the following statement:
SHOW GRANTS FOR read_only;

MariaDB Security

256

The output of the preceding statement is shown as follows:

6.	 Create a test user using the following statement:
CREATE USER test_user@'localhost'

 IDENTIFIED BY 'testpassword';

7.	 Display the permissions granted to test_user using the following statement:
SHOW GRANTS FOR test_user@'localhost';

8.	 Assign the read_only role to test_user, as follows:
GRANT read_only TO test_user@'localhost';

9.	 Display the permissions granted to test_user again using the following statement
(they will be different than when we ran the statement previously):
SHOW GRANTS FOR test_user@'localhost';

The output of the preceding statement is shown as follows:

10.	 Log out of MariaDB and log back in as test_user using the following statement:
mysql -u test_user -p

11.	 Try to use the test database using the following statement (we will get an access
denied error):
USE test;

Chapter 13

257

12.	 Set the role to read_only and try to use the test database again using the
following statement (this time, we will be able to access the test database):
SET ROLE read_only;
USE test;

13.	 Show the current role and the current user, as follows:
SELECT current_role();
SELECT current_user();

14.	 Display the permissions granted by using the following statement:
SHOW GRANTS;

How it works...
The roles feature is included and enabled in MariaDB by default. There's nothing that needs to
be done before we can start using it.

Roles sort of exist in the same area as users, and we use the same commands (such as GRANT,
REVOKE, and SHOW) with roles that we use for users. However, they are not users; for example,
roles can't log in. Instead, roles are a collection of permissions that we can grant to a user.

Granting a role to a user doesn't automatically apply it to the user whenever they are logged
in. The user has to use the SET ROLE command to enable a given role and the permissions
that a role provides. We can see the currently enabled role with the SELECT current_
role() command.

The output of steps 12 and 13 will look similar to the following screenshot:

MariaDB Security

258

When a role is enabled, the SHOW GRANTS command will show both the default GRANT
permissions assigned to the user and the GRANT permissions provided by the currently
applied role. The output of this command will look like the following screenshot:

See also
ff The complete documentation of the roles feature is available at

https://mariadb.com/kb/en/roles/

ff Information about the development of the roles feature in MariaDB is available at
https://mariadb.atlassian.net/browse/MDEV-4397

Authenticating using the PAM authentication
plugin

We're not limited to using MariaDB's built-in authentication system. We can also authenticate
users using Linux's Pluggable Authentication Modules (PAM) system. Using PAM can enable
authentication schemes far beyond what MariaDB provides, including things such as using
biometric scanners, authenticator token generators, and so on.

Getting ready
The PAM authentication plugin is only available on Linux, so the server-side portions of this
recipe are Linux-only. The mysql command-line client on Windows can make use of the PAM
authentication on a Linux-based MariaDB server so that part of the recipe is cross-platform.

How to do it...
1.	 On Debian or Ubuntu systems, add the system mysql user to the shadow group

using the following command:
sudo adduser mysql shadow

Chapter 13

259

2.	 Create a new system-login account named pamuser using either the useradd or
adduser commands and set the user's password using the following statements:
sudo adduser pamuser

sudo passwd pamuser

3.	 Launch the mysql command-line client and connect to our MariaDB database server.

4.	 Install the auth_pam plugin using the following statement:
INSTALL SONAME 'auth_pam';

5.	 Create a user that matches the name of the system user and is authenticated using
PAM in the following manner:
CREATE USER pamuser@'localhost' IDENTIFIED VIA pam USING 'common-
password';

6.	 Grant the user privileges to our test database using the following statements:
GRANT ALL ON test.* to pamuser@'localhost';

FLUSH PRIVILEGES;

7.	 Open a new terminal window and use the mysql command-line client to connect to
our server using the pamuser user we created using the following statement:
mysql -u pamuser

8.	 Enter the password when prompted and then issue the SHOW GRANTS; command to
view the privileges granted to pamuser.

How it works...
Like many other plugins that ship with MariaDB, the PAM authentication plugin is disabled
by default. This plugin can be easily enabled using the INSTALL SONAME command. The
INSTALL PLUGIN command can also be used if desired.

Once installed, we can create users that are identified via PAM instead of via the standard
password option. When identifying users in this way, we need to tell MariaDB what type of
PAM authentication to use. These are defined using PAM configuration files. The existing ones
can be found under the /etc/pam.d/ directory. To keep things simple with this recipe, the
standard common-password authentication was used. It checks the password entered with
the passwords stored in the shadow file, but it could be any sort of authentication that PAM
supports, including LDAP, Active Directory, smart cards, or even biometric scanners.

The PAM authentication plugin simply hands authentication duties off to PAM and then waits
for a response. This is why we are still prompted for a password even when we didn't specify
-p on the command line when logging in. After PAM has checked our credentials, if it comes
back with an OK, then our user is authenticated and given the rights granted to them. If not,
the login fails as expected.

MariaDB Security

260

The output of steps 7 and 8, assuming we enter the password correctly, will look similar to the
following screenshot:

There's more...
We don't have to rely on the existing configuration files or even the existing PAM plugins when
using PAM to authenticate users. We can easily create our own plugins and configurations.
The following See also section contains links to the documentations that describe how to
do this.

See also
ff More on the PAM authentication plugin can be found at

https://mariadb.com/kb/en/pam-authentication-plugin/

ff An excellent blog post on writing your own PAM authentication plugin can be found at
https://blog.mariadb.org/writing-a-mariadb-pam-authentication-
plugin/

Index
Symbols
$pk variable 194
--add-drop-database option 20
--add-drop-table option 20
--add-locks option 21
@@skip_replication session variable 126

A
ACID

URL 71
Advanced Package Tool (APT) 13
ALTER TABLE command

about 60
URL 40

ALTER TABLE method 79
ANALYZE TABLE command 146
Aria benchmark results

URL 55
Aria pagecache

configuring 53, 54
aria_pagecache_age_threshold variable 54
aria_pagecache_buffer_size variable 54
aria_pagecache_division_limit variable 54
Aria storage engine documentation

URL 55
Aria two-step deadlock detection

configuring 47, 48
async option 19
Audit Plugin

installing 140, 141
using 142-145

authentication
PAM authentication plugin, used for 258-260

B
Backups

making, with mysqldump 19, 20
making, with XtraBackup 18
restoring from 19

backup user
creating 17, 18

binary logs
versus relay logs 116

BINARY[(N)] type 173
bind_address variable 115
binlog event

enhancing, with row event annotation
122-124

replication, skipping of 125-127
binlog event checksums

configuring 124, 125
URL 125

binlog event checksums interoperability
URL 125

brew
URL 13

bug
URL 201

C
Cassandra

and MariaDB, mapping data between
230-234

URL 229
cassandra_default_thrift_host variable 233
Cassandra storage engine

INSERT, used with 234, 235
installing 228, 229

262

SELECT, used with 236-238
URL 35, 229

CHANGE MASTER TO command
about 115
URL 118

CHAR[(N)] type 173
chown command 244
close method 194
Codership group

URL 134
COLUMN_ADD function 173
COLUMN_CHECK function 178
COLUMN_CREATE function 173
COLUMN_DELETE function 173
COLUMN_EXISTS function 178
COLUMN_GET function 178
COLUMN_JSON function 179
COLUMN_LIST function 178, 179
compression

modifying, of TokuDB table 81, 82
CONNECTION parameter 167
connections

encrypting, with SSL 249-255
CONNECT storage engine

installing 84, 85
URL 84
used, for accessing MariaDB table 97-99
used, for reading CSV data 89-92
used, for reading XML data 93-96
used, for writing CSV data 89-92
used, for writing XML data 93-96

CONNECT tables
creating 85-88
creating, URL 89
dropping 85-88
dropping, URL 89
indexing, URL 84

cqlsh command 231
CREATE INDEX command

URL 60, 62
CREATE TABLE command 170, 181
cron

tables, checking with 21, 22
tables, optimizing with 21, 22

CSV (comma separated values) 89
CSV data

reading, CONNECT storage engine used
89-92

writing, CONNECT storage engine used
89-92

CSV data files
connecting to, URL 92

CSV header lines 92
CURRENT_TIMESTAMP() function

about 67
URL 67

D
data

deleting, HandlerSocket used 197-200,
206-208, 216-218

deleting, in dynamic column 171-174
deleting, PERL used 197-200
deleting, Python used 207, 208
deleting, Ruby used 216-218
importing, from mysqldump 25, 26
inserting, HandlerSocket used 195, 196,

204, 205, 214, 215
inserting, in dynamic column 171-174
inserting, PERL used 195, 196
inserting, Python used 204, 205
inserting, Ruby used 214, 215
mapping, between MariaDB and Cassandra

230-234
reading from database, pyhs used 202-204
reading, from dynamic column 175-179
reading, HandlerSocket used 192-195,

211-213
reading, PERL used 192-195
reading, Ruby used 211-213
updating, HandlerSocket used 197-208,

216-218
updating, in dynamic column 171-174
updating, PERL used 197-200
updating, Python used 207, 208
updating, Ruby used 216-218

datadir variable 244
data types

in CONNECT storage engine, URL 92
DATETIME column

microseconds, using in 65-67
updating 67-69
URL 69

DATETIME[(D)] type 173

263

DATE type 173
DECIMAL[(M[,D])] type 173
DELETE

used, with Cassandra storage engine
234, 235

doctor command 13
DROP INDEX command 63

URL 64
dynamic column

data, deleting 171-174
data, inserting 171-174
data, reading from 175-179
data, updating 171-174
nesting 174
tables, creating with 170, 171
URL 171

dynamic columns API
URL 171

DYNAMIC_COLUMN_STORAGE=yes attribute
236

E
engine-independent table statistics

URL 147
using 145, 146

Estimate option 107
execute_single method 194-197, 213, 215,

217
exists_to_in subquery optimization strategy

URL 58
extended keys

used, with InnoDB 46
used, with XtraDB 46

extended statistics
using 147, 148

extra_port variable 52

F
Feedback plugin

about 10
enabling 14, 15
URL 15

FIELD_FORMAT option 96
FILE_NAME option 88
filenames

versus plugin names 34

find method 203
find_modify method 207, 208
flag= option 108
FLAG option 92
FLUSH PRIVILEGES command 17
Fractal Tree Indexes 71
full-text index

creating 60-62
URL 62

G
Galera wiki

URL 134
get_index_id method 203
global transaction IDs

URL 118
using 117, 118

GRANT command 254
group commit optimization

URL 116

H
HandlerSocket

configuring 186-189
installing 186-189
used, for deleting data 197-200, 206-208,

216-218
used, for inserting data 195, 196, 204, 205,

214, 215
used, for reading data 192-195, 211-213
used, for updating data 197-200, 206-208,

216-218
used, with telnet 219-224

HandlerSocket configuration options
URL 189

HandlerSocket PERL client library
installing 191, 192

HandlerSocket plugin
URL 189

handlersocket_port_wr variable 187
HandlerSocket protocol

URL 189, 225
HandlerSocket Ruby client library

installing 210, 211
have_ssl variable 254
HeidiSQL 10

264

HTML output
producing 35, 36

HTML table structure
versus tree 95, 96

I
index

adding, to TokuDB table 79, 80
creating 59, 60
removing 63, 64
URL 60

indexer command 164, 166
innobackupex script 18, 19
InnoDB

and XtraDB, switching between 16
extended keys, using with 46
table, migrating from Aria 39
table, migrating from MyISAM 39

InnoDB documentation
URL 40

insecure password users
checking for 248, 249

INSERT
used, with Cassandra storage engine

234, 235
insert method 205
INSTALL command 187
INSTALL PLUGIN command

about 141, 259
versus INSTALL SONAME command 35

INSTALL SONAME command
about 73, 155, 187, 228, 229, 259
URL 35
using 34
versus INSTALL PLUGIN command 35

INTEGER type 173
Internet Speculative Fiction Database (ISFDB)

25

J
Java JRE

installing, URL 230
JOINs

using 64, 65

K
key cache variables 50
KILL QUERY ID command

URL 31

L
launchctl command 14
libhsclient library

installing 189, 190
LIMIT

used, with LIMIT ROWS EXAMINED clause 33
LIMIT ROWS EXAMINED clause

LIMIT, using with 33
using 32, 33

Linux
MariaDB files, securing on 242-245
MariaDB, installing on 10-13
Sphinx daemon, installing 156, 157

LOAD DATA INFILE command 89
log_bin variable

URL 119

M
MAC address table type

using 108, 109
Mac OS X

MariaDB, installing on 13, 14
MAC table type

URL 109
MariaDB

and Cassandra, mapping data between
230-234

installing, on Linux 10-13
installing, on Mac OS X 13, 14
installing, on Windows 8, 9
securing, with mysql_secure_installation

241, 242
SphinxSE, installing 154-156
TokuDB, URL 74

MariaDB Audit Plugin
URL 141

MariaDB files
securing, on Linux 242-245
securing, on Windows 245-247

265

MariaDB Galera cluster
configuring 134
installing 130-133
monitoring, URL 135
node, dropping from 134, 135
shutting down 136, 137
URL 134

MariaDB installation
URL, on Linux 13

MariaDB Knowledge Base, replication
URL 116

MariaDB MSI installer
URL, for Windows 10

MariaDB optimizer strategies
controlling 44, 45

MariaDB table
accessing, CONNECT storage engine used

97-99
MASTER_LOG_FILE variable 117
MASTER_LOG_POS variable 117
MASTER_USE_GTID variable 117
microseconds

used, in DATETIME column 65-67
multisource replication

URL 121
using 118-121

MVCC
URL 71

MyISAM segmented key cache
configuring 49, 50

mysqlbinlog command
about 124
URL 124

mysqlcheck
tables, checking with 21, 22
tables, optimizing with 21, 22

mysql client
progress reporting, used in 22, 23

mysql command 26
mysql command-line client

URL 36
mysqldump

backups, making with 19, 20
data, importing from 25, 26

mysqldump command
URL 27

mysql_secure_installation
MariaDB, securing with 241, 242
URL 242

MYSQL Table Type
URL 99

N
nested dynamic column

reading 179
NFS 19
node

dropping, from MariaDB Galera cluster
134, 135

NoSQL databases 169
NOW() function

about 67
URL 67

number of segments
setting, to 1 50

O
occurcol variable 105
OCCUR table type

using 103-106
old_passwords variable 248
open_index method 194
optimal number of segments

determining 50
OPTIMIZE command 77
OPTION_LIST option 88

P
PAM authentication plugin

URL 260
used, for authentication 258-260

PASSWORD() function
URL 249

Per account SSL options
URL 255

performance schema
enabling 148, 149
URL 150
using 150-152

266

PERL
used, for deleting data 197-200
used, for inserting data 195, 196
used, for reading data 192-195
used, for updating data 197-200

PERL client library
URL 195

PIVOT data type
URL 103

PIVOT table type
using 100-103

Pluggable Authentication Modules (PAM) 258
plugin names

versus filenames 34
pool-of-threads

URL 53
progress reporting

disabling 23
in mytop 23
used, in mysql client 22, 23

progress_report_time variable 23
Proxy table type

URL 100
pyhs

used, for reading data from database
202-204

pyhs library
URL 202

Python
used, for deleting data 206-208
used, for inserting data 204, 205
used, for updating data 206-208

Python pyhs client library
installing 200, 201

Q
queries

optimizing, with subquery cache 55-57
QUOTED option 91

R
rankcol variable 105
read_only variable 115
relay logs

versus binary logs 116

REPLICATE_EVENTS_MARKED_FOR_SKIP
variable 126, 127

replicate_ignore_db option 120
replicate_ignore_table variable 121
replication

setting up 112-116
replication failure

causes 115
repository configuration tool

URL 133
require handlersocket command 210
roles

used, for controlling user permissions
255-258

roles, feature
URL 258

row event annotation
binlog event, enhancing with 122-124
URL 124

rt indexes
URL 168

Ruby
used, for deleting data 216-218
used, for inserting data 214, 215
used, for reading data 211-213
used, for updating data 216-218

Ruby handlersocket library
URL 214

running queries
SHOW EXPLAIN, using with 27-31

S
search command 164
Security 22
SELECT

used, with Cassandra storage engine
236-238

SELECT command 66
SELECT current_role() command 257
semijoin subqueries

optimizing 57, 58
semijoin subquery optimization

in MariaDB, URL 58
server_audit_incl_users variable 145
server_id variable 115
service command 157

267

SET PASSWORD command
URL 249

SET ROLE command 257
SHOW ALL SLAVES STATUS; command 120
SHOW command 61, 148
SHOW CREATE TABLE command 183
SHOW ENGINES command 16
SHOW ENGINES; command 72, 149
SHOW ENGINE TokuDB STATUS; command 75
SHOW EXPLAIN

used, with running queries 27-31
SHOW EXPLAIN command

URL 31
SHOW GRANTS command 258
SHOW INDEX command

URL 60, 62
SHOW PLUGINS; command 72, 141
SHOW PROCESSLIST; command 188
SHOW STATUS command

about 56
using 42, 43

SHOW VARIABLES command 228
SIGNED [INTEGER] type 173
skip_networking variable 115
SkySQL

URL 140
Special Virtual Tables

URL 89
Sphinx

URL 156
versus SphinxSE 155

Sphinx daemon
configuring 160-163
installing, on Linux 156, 157
installing, on Windows 157-159
searching with 163-168

SphinxQL
URL 168

SphinxSE
installing, in MariaDB 154-156
searching with 163-168
status, obtaining 155
URL 156
versus Sphinx 155

Sphinx Storage Engine. See SphinxSE
sql_query variable 162

SSL
connections, encrypting with 249-255

SSL status variables
URL 255

SSL system variables
URL 255

statistics
URL 64

STATUS; command 253
STATUS variables

URL 134
stopwords

URL 62
subquery cache

benefits, URL 57
queries, optimizing with 55-57
URL 57

sync option 19

T
tables

checking, with cron 21, 22
checking, with mysqlcheck 21, 22
creating, with dynamic column 170, 171
migrating, from Aria to InnoDB 39
migrating, from Aria to XtraDB 39
migrating, from MyISAM to Aria 37, 38
migrating, from MyISAM to InnoDB 39
migrating, from MyISAM to XtraDB 39
optimizing, with cron 21, 22
optimizing, with mysqlcheck 21, 22

TABNAME option 105
Tag attributes 96
Tags 96
telnet

HandlerSocket, used with 219-224
threadpool

configuring 50-52
versus thread-per-connection performance,

URL 53
threadpool benchmarks

URL 53
thread_pool_idle_timeout variable 52
thread_pool_max_threads variable 52
thread_pool_stall_limit variable 52

268

THRIFT_HOST parameter 233
TIME[(D)] type 173
TIMESTAMP column

updating 67-69
URL 69

TokuDB
about 71
clustering indexes, URL 81
configuring 74, 75
installing 72, 73
migrating to 77-79
URL 74

tokudb-cache-size option 75
TokuDB-specific configuration file

creating 73
TokuDB table

compression, modifying of 81, 82
creating 75, 77
index, adding to 79, 80

Tokutek
URL 75

tree
versus HTML table structure 95, 96

U
UNINSTALL SONAME command 188
UNSIGNED [INTEGER] type 173
UPDATE

used, with Cassandra storage engine
234, 235

user permissions
controlling, roles used 255-258

user statistics feature
URL 148

use_stat_tables variable 147

V
virtual columns

using 180-183
virtual columns documentation

in MariaDB, URL 183

W
Windows

MariaDB files, securing on 245-247
MariaDB, installing on 8, 9
Sphinx daemon, installing 157-159

Windows Management Instrumentation (WMI)
106

WMI data type
URL 107

WMI table type
using 106, 107

wsrep_incoming_addresses variable 132
wsrep_local_state_comment variable 135

X
XCOL data type

URL 100
XCOL table type

using 99, 100
XML data

inserting 95
reading, CONNECT storage engine used

93-96
writing, CONNECT storage engine used

93-96
XML output

producing 36, 37
XtraBackup

about 19
Backups, making with 18

XtraDB
and InnoDB, switching between 16
extended keys, using with 46
table, migrating from Aria 39
table, migrating from MyISAM 39

XtraDB documentation
URL 40

Y
Yellowdog Updater Modified (YUM) 13

Thank you for buying

MariaDB Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, cutting-
edge books for communities of developers, administrators, and newbies alike. For more
information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Getting Started with MariaDB
ISBN: 978-1-78216-809-6 Paperback: 100 pages

Learn how to use MariaDB to store your data easily and
hassle-free

1.	 A step-by-step guide to installing and configuring
MariaDB.

2.	 Includes real-world examples that help you learn
how to store and maintain data on MariaDB.

3.	 Written by someone who has been involved with
the project since its inception.

MySQL Management and
Administration with Navicat
ISBN: 978-1-84968-746-1 Paperback: 134 pages

Master the tools you thought you knew and discover the
features you never knew existed

1.	 Tips, tricks, and fast-paced tutorials for getting the
most out of Navicat.

2.	 Master the visual design tools and editors with
thorough examples.

3.	 Discover how easy Navicat makes outsmarting the
trickiest cases.

4.	 Both Mac and PC versions covered, with
screenshots detailing differences in
performing tasks.

Please check www.PacktPub.com for information on our titles

Mastering phpMyAdmin
3.4 for Effective MySQL
Management
ISBN: 978-1-84951-778-2 Paperback: 394 pages

A complete guide to getting started with phpMyAdmin
3.4 and mastering its features

1.	 A step-by-step tutorial for manipulating data with
the latest version of phpMyAdmin.

2.	 Administer your MySQL databases with
phpMyAdmin.

3.	 Manage users and privileges with MySQL Server
Administration tools.

4.	 Learn to do things with your MySQL database and
phpMyAdmin that you didn't know were possible!

Microsoft SQL Server 2012
with Hadoop
ISBN: 978-1-78217-798-2 Paperback: 96 pages

Integrate data between Apache Hadoop and SQL
Server 2012 and provide business intelligence on the
heterogeneous data

1.	 Integrate data from unstructured (Hadoop) and
structured (SQL Server 2012) sources.

2.	 Configure and install connectors for a
bi-directional transfer of data.

3.	 Full of illustrations, diagrams, and tips with clear,
step-by-step instructions and practical examples.

Please check www.PacktPub.com for information on our titles

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
with MariaDB

	Introduction
	Installing MariaDB on Windows
	Installing MariaDB on Linux
	Installing MariaDB on Mac OS X
	Enabling the Feedback plugin
	Switching between InnoDB and XtraDB
	Creating a backup user
	Making backups with XtraBackup
	Making backups with mysqldump
	Checking and optimizing tables automatically with mysqlcheck and cron
	Using progress reporting in the mysql client

	Chapter 2
: Diving Deep
into MariaDB
	Introduction
	Importing the data exported by mysqldump
	Using SHOW EXPLAIN with running queries
	Using LIMIT ROWS EXAMINED
	Using INSTALL SONAME
	Producing HTML output
	Producing XML output
	Migrating a table from MyISAM to Aria
	Migrating a table from MyISAM or Aria to InnoDB or XtraDB

	Chapter 3
: Optimizing and
Tuning MariaDB
	Introduction
	Using SHOW STATUS to check if a feature is being used
	Controlling MariaDB optimizer strategies
	Using extended keys with InnoDB and XtraDB
	Configuring the Aria two-step deadlock detection
	Configuring the MyISAM segmented key cache
	Configuring threadpool
	Configuring the Aria pagecache
	Optimizing queries with the subquery cache
	Optimizing semijoin subqueries
	Creating an index
	Creating a full-text index
	Removing an index
	Using JOINs
	Using microseconds in the DATETIME columns
	Updating DATETIME and TIMESTAMP columns automatically

	Chapter 4
: TokuDB Storage Engine
	Introduction
	Installing TokuDB
	Configuring TokuDB
	Creating TokuDB tables
	Migrating to TokuDB
	Adding indexes to TokuDB tables
	Modifying the compression of a TokuDB table

	Chapter 5
: The CONNECT
Storage Engine
	Introduction
	Installing the CONNECT storage engine
	Creating and dropping CONNECT tables
	Reading and writing CSV data using CONNECT
	Reading and writing XML data using CONNECT
	Accessing MariaDB tables using CONNECT
	Using the XCOL table type
	Using the PIVOT table type
	Using the OCCUR table type
	Using the WMI table type
	Using the MAC address table type

	Chapter 6
: Replication in MariaDB
	Introduction
	Setting up replication
	Using global transaction IDs
	Using multisource replication
	Enhancing the binlog with row event annotations
	Configuring binlog event checksums
	Selectively skipping replication of binlog events

	Chapter 7
: Replication with MariaDB Galera Cluster
	Introduction
	Installing MariaDB Galera Cluster
	Dropping a node from a MariaDB
Galera Cluster
	Shutting down a MariaDB Galera Cluster

	Chapter 8
: Performance and
Usage Statistics
	Introduction
	Installing the Audit Plugin
	Using the Audit Plugin
	Using engine-independent table statistics
	Using extended statistics
	Enabling the performance schema
	Using the performance schema

	Chapter 9
: Searching Data
using Sphinx
	Introduction
	Installing SphinxSE in MariaDB
	Installing the Sphinx daemon on Linux
	Installing the Sphinx daemon on Windows
	Configuring the Sphinx daemon
	Searching with the Sphinx daemon and SphinxSE

	Chapter 10
: Exploring Dynamic
and Virtual Columns
in MariaDB
	Introduction
	Creating tables with dynamic columns
	Inserting, updating, and deleting dynamic column data
	Reading data from a dynamic column
	Using virtual columns

	Chapter 11
: NoSQL with HandlerSocket
	Introduction
	Installing and configuring HandlerSocket
	Installing the libhsclient library
	Installing the HandlerSocket PERL client libraries
	Reading data using HandlerSocket and PERL
	Inserting data using HandlerSocket and PERL
	Updating and deleting data using HandlerSocket and PERL
	Installing the HandlerSocket Python client libraries
	Reading data using HandlerSocket and Python
	Inserting data using HandlerSocket and Python
	Updating and deleting data using HandlerSocket and Python
	Installing the HandlerSocket Ruby client libraries
	Reading data using HandlerSocket and Ruby
	Inserting data using HandlerSocket and Ruby
	Updating and deleting data using HandlerSocket and Ruby
	Using HandlerSocket directly with telnet

	Chapter 12
: NoSQL with
the Cassandra
Storage Engine
	Introduction
	Installing the Cassandra storage engine
	Mapping data between MariaDB and Cassandra
	Using INSERT, UPDATE, and DELETE with the Cassandra storage engine
	Using SELECT with the Cassandra storage engine

	Chapter 13
: MariaDB Security
	Introduction
	Securing MariaDB with mysql_secure_installation
	Securing MariaDB files on Linux
	Securing MariaDB files on Windows
	Checking for users with insecure passwords
	Encrypting connections with SSL
	Using roles to control user permissions
	Authenticating using the PAM authentication plugin

	Index

